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Neural Predictor-based Dynamic Surface Parallel
Control for MIMO Uncertain Nonlinear
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Abstract—We propose a neural predictor-based dynamic sur-
face parallel control method for a class of uncertain nonlinear
systems in this brief. The dynamics of the physical system is
in the strict-feedback form and subject to multi-input, multi-
output, and uncertain nonlinearities. The parallel control method
is developed based on an ACP methodology, including three steps.
Firstly, an artificial system to the physical system is developed
using an echo state network-based neural predictor structure.
Next, a high-order tuner-based computational experiment is
developed to achieve online adaptive training of the echo state
network. Finally, parallel execution is developed by using a
second-order linear tracking differentiator-based dynamic sur-
face control approach. The total closed-loop system can be proved
to be input-to-state stable. The effectiveness of the proposed
theoretical results is demonstrated by a simulation of trajectory
tracking of an autonomous surface vehicle.

Index Terms—Dynamic surface control, parallel control, ACP
methodology, strict-feedback systems, neural predictor

I. INTRODUCTION

TRacking control of strict-feedback systems has always
been a hot topic [1]–[4]. Many physical systems can

be modeled or transformed into strict-feedback systems, such
as autonomous marine vehicles, mobile robots, and indus-
trial robots [1]. The backstepping approach is one of the
efficient tools for designing tracking controllers for strict-
feedback systems [2]–[4]. However, as the order of dynamics
increases, backstepping-based controller faces the explosion
of complexity due to repeatedly taking the differentiation of
virtual control laws. For the purpose of overcoming this issue,
the dynamic surface control approach is proposed [5]–[8].
The main feature of the dynamic surface control is adding
a first-order filter in every step of the previous backstepping
controller design. The derivatives of virtual control laws can be
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taken by passing through the first-order filter. In order to han-
dle the uncertain nonlinearities in the model, neural dynamic
surface control methods are proposed [5], [6]. Subsequently,
in [9]–[11], neural predictor-based dynamic surface control
approaches are developed by incorporating state predictors into
the neural dynamic surface control approach, leading to an
improvement in transilient performances. The above dynamic
surface controllers in [5]–[11] are only related to states and
produced passively. When states change suddenly, the con-
troller will update sharply, leading to a difficult execution [12].

Parallel control theory is proposed to develop controllers
for physical systems via an ACP (Artificial systems, Comput-
ing experiments, Parallel executions) methodology [12]. The
artificial system is an agent model relevant to the physical
system. The computational experiment is developed to update
and regulate the artificial system. The parallel execution is
applied in both the physical and the artificial systems such
that the two systems are parallel regulated and controlled.
Unlike traditional feedback control, the most feature of parallel
control is that the artificial system in the virtual space and
the practical system in the physical space are parallel. Several
parallel control methods have recently been proposed for linear
and nonlinear systems [12]–[15]. However, parallel control of
MIMO strict-feedback systems is still open.

Motivated by the above-mentioned observations, we focus
on the dynamic surface control of a class of MIMO uncer-
tain nonlinear strict-feedback systems under the framework
of parallel control. According to the ACP methodology, the
motivation of our design is to divide the control method
into an artificial system, a computational experiment, and a
parallel execution. Different from the existing parallel control
methods [12]–[15] using neural networks directly, the artificial
system herein is developed based on the neural predictor. The
neural predictor has a better transient performance [16]. In
contrast to the existing methods in [5]–[11] under the feedback
control framework, the proposed dynamic surface controller
is transformed into parallel execution to physical systems.
Because of this essential difference, the analysis approaches in
[5]–[11] can not be directly applied in this brief. Besides, in
contrast to the adaptive identifiers designed in [9]–[11], [17],
a high-order tuner is introduced to construct the computational
experiment relevant to online adaptive training of the neural
network, leading to a higher convergence speed.

Notations Throughout this paper, denote by 0n an n-
dimensional 0-vector. Denote by k · k the Euclidean norm of
a vector. Denote by k · kF the Frobenius norm of a matrix.
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Denote by Rn the n-dimensional Euclidean space. Denote by
R+ the positive real space.

II. PRELIMINARY KNOWLEDGE

A. Parallel Control

Let us introduce the parallel control briefly. Detailed intro-
ductions can refer to [12]–[15]. Consider a physical system
ẋ = f(x, u), where x 2 Rm, u 2 Rn, and f(·) 2 Rm denote
the state, the control input, and the piecewise continuous
function, respectively. In the feedback control framework, u
is generated by u = h(x) according to the state information
passively. In the framework of the parallel control, an artificial
system relevant to the physical system is ˙̂x = f̂(x, x̂, u), where
x̂ is an estimation of x and f̂(·) is an estimation of f(·). u
is constructed as a new dynamic system u̇ = h(x, u), where
h(·) 2 Rn is a piecewise continuous function. The dynamic
system executes the physical and artificial systems in parallel
according to information interaction.

B. Physical systems

We use a class of MIMO strict-feedback systems to model
the physical system considered in this brief as follows

8
<

:

ẋk = xk+1 + fk (x̄k), k = 1, ..., n� 1
ẋn = u+ fn (x̄n)
y = x1

(1)

where xl 2 Rm with l = 1, ...n denotes the system state,
u 2 Rm denotes the control input, y 2 Rm is the system
output, x̄l = [x1, ..., xl]T 2 Rlm with l = 1, ...n is a state
vector, and fl(x̄l) : Rlm ! Rm is an unknown nonlinear
function. Define a virtual leader yr 2 Rm. Note that in the
real world, many actual physical systems can be modeled by
or transformed into an MIMO strict-feedback form, such as
autonomous surface vehicles, sensor networks, and industrial
robots. Then, we make the following assumption,

Assumption 1. For the physical system (1), (i) fl(x̄l) is local
Lipschitz in x̄l. (ii) xl and ẋl are measurable. (iii) yr(t) and
ẏr(t) are bounded.

III. DYNAMIC SURFACE PARALLEL CONTROL METHOD
DESIGN

A. Artificial system design via neural predictor

Step l.(l = 1..., n�1) At first, recall the l-th order dynamics
of the physical system as ẋl = xl+1+fl(x̄l). It can be observed
that fl(x̄l) is an uncertain nonlinear term. To identify fl(x̄l),
an echo state network with p reservoir states is utilized [18]

fl(x̄l) = W ⇤T
l Xl + "l (2)

where W ⇤
l 2 Rp⇥m is the output weights matrix, "l 2 Rm is

the approximation error with k"lk  "⇤l with "⇤l 2 R+, and
Xl 2 Rp is the reservoir state vector. The dynamics of Xl

is Ẋl = cl[�blXl + �(W⇠,l⇠l + WX,lXl)] where cl 2 R+

and bl 2 R+ denote the time coefficient and the decay
rate, respectively, ⇠l = [xT

l (t), x
T
l (t � td), xT

l+1(t)]
T 2 R3m

denotes the input vector with td 2 R+ being a sampling

time, �(·) : R3m ! Rm denotes the column vector con-
sisting 3m Sigmoid-like activation functions, W⇠,l 2 Rm⇥3m

denotes the sparse connection matrix among reservoir states,
WX,l 2 Rm⇥p denotes the connection matrix among inputs.

Then, the following artificial system associated with the lth-
order dynamics of the physical system is designed as

˙̂xl = xl+1 + f̂l � (kl + ⇢l)(x̂l � xl) (3)

where f̂l = WT
l Xl, kl 2 Rm⇥m denotes a diagonal control

gain, and ⇢l 2 Rm⇥m is a diagonal parameter matrix.
Step n. recall the nth-order dynamics ẋn = u + fn(x̄n).

Letting xn+1 = u+ fn(x̄n), the dynamics of xn+1 is

ẋn+1 = u̇+ F (x̄n) (4)

where F (x̄n) = ⌃n
l=1

@fn(x̄n)
@xl

ẋl. Similarly, we can use the
following echo state network to recover F (x̄n)

F (x̄n) = WT
n Xn + "n (5)

where the definitions of W ⇤
n 2 Rp⇥m, "n 2 Rm, and Xn 2 Rp

are similar to the proceeding step.
An artificial system associated with the n + 1th-order

dynamics of the physical system is designed as follows
˙̂xn+1 = u̇+ F̂ � (kn+1 + ⇢n+1)(x̂n+1 � xn+1) (6)

where F̂ = WT
l Xl, kn+1 2 Rm⇥m denotes a diagonal control

gain, and ⇢n+1 2 Rm⇥m is a diagonal parameter matrix.
Then, let xn pass through a third-order linear tracking

differentiator to identify ẋn+1 as follows
8
><

>:

˙̄xn = x̄d
n

˙̄xd
n = x̄dd

n

˙̄xdd
n = �µ3

a[�n,1(x̄n � xn) + �n,2(
x̄d
n

µa
) + �n,3(

x̄dd
n
µ2
a
)]

where µa 2 R+ is the time constant, and �1,�2,�3 2 R+ are
tuning parameters. It has been proved in [19] that there exist
◆⇤a, ◆

d⇤
a , ◆dd⇤a 2 R+ satisfying kx̄n�xnk  ◆⇤a, kx̄d

n�ẋnk  ◆d⇤a ,
and kx̄dd

n � ẍnk  ◆dd⇤a .

Remark 1. The echo state network has a simple structure.
Reservoir states are sparsely connected, and the weights are
randomly assigned. The input weights are fixed. Besides, the
echo state network has fewer tuning parameters. Nevertheless,
other types of neural networks can be used as alternatives, such
as the single hidden-layer neural network in [9] and the RBF
network in [11], [20]. In the approximation property, there is
no obvious difference between these different neural networks
and the echo state network used in this brief.

B. Computational experiments based on high-order tuners

In the proposed parallel control method, the computational
experiment is designed to develop an updating strategy for
the echo state network utilized in the artificial system. The
update strategy herein is the online adaptation. For the lth-
order artificial system with l = 1, ..., n� 1, a high-order tuner
based update law is constructed for W ⇤

l as follows
(

⇥̇l = � �l

Tl
XleTl (x̂l, xl)

Ẇl = ��l(Wl �⇥l)
(7)
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where el(x̂l, xl) = ˙̃xl + (kl + ⇢l)x̃l with x̃l = x̂l � xl, Tl =
1 + kXlk2, and �l 2 R+ and �l 2 R+ denote two constants.
Ref. [21] shows that the high-order tuner enables accelerated
learning. The meaning of accelerated learning is to raise the
convergence rate of neural networks.

Similarly, for the n+1th-order artificial system, a high-order
tuner based update law is constructed for W ⇤

l as follows
(

⇥̇n = � �n

Tn
XneTn (x̄

dd
n , x̂n+1, xn+1)

Ẇn = ��n(Wn �⇥n)
(8)

where eTn (x̄
dd
n , x̂n+1, xn+1) = ˙̂xn+1 � x̄dd

n + (kn+1 +
⇢n+1)x̃n+1 with x̃n+1 = x̂n+1 � xn+1, Tn = 1 + kXnk2,
and �n 2 R+ and �n 2 R+ denote two constants.

C. Parallel execution design based on dynamic surface control

Step 1. Define an error surface for the first-order dynamics
of the physical system as z1 = y � yr, and the dynamics of
z1 satisfies ż1 = x2 + f1(x̄1)� ẏr. Then, we can develop the
following virtual control law ↵1 as follows

↵1 = �k1z1 + ẏr � f̂1. (9)

Without using the first-order filter in the dynamic surface
control approaches [5]–[11], a second-order linear tracking
differentiator is employed as follows

(
v̇1 = vd1
v̇d1 = �µ2

1[(v1 � ↵1) + 2 vd
1

µ1
]

(10)

where µ1 2 R+ denotes a time constant. It has been proved
in [19] that there exist ◆⇤1, ◆d⇤1 2 R+ satisfying kv1�↵1k  ◆⇤1
and kvd1 � ↵̇1k  ◆d⇤1 . Compared with the first-order filter
using in the traditional dynamic surface control design, linear
tracking differentiator is capable of disturbance rejection [19].

Step l.(l = 1..., n � 1) Define an error surface for the lth-
order dynamics of the physical system as zl = xl � vl�1, and
the dynamics of zl satisfies żl = xl+1 + fl(x̄l)� vdl�1. Then,
we can develop the following virtual control law ↵l as follows

↵l = �klzl + vdl�1 � f̂l � zl�1. (11)

An estimated signal vl related to ↵l can be obtained by the
following second-order linear tracking differentiator as

(
v̇l = vdl
v̇dl = �µ2

l

h
(vl � ↵l) + 2 vd

l
µl

i (12)

where µl 2 R+ denotes the time constant. There exist ◆⇤l , ◆
d⇤
l 2

R+ satisfying kvl � ↵lk  ◆⇤l and kvdl � ↵̇lk  ◆d⇤l .
Step n. Define an error surface for the nth-order dynamics

of the physical system as zn = xn � vn�1, and the dynamics
of zn satisfies żn = xn+1 � vdn�1. Then, we can develop the
following virtual control law ↵n as follows

↵n = �knzn + vdn�1 � zn�1 (13)

where kn 2 Rm⇥m denotes a control gain matrix.
Similarly, an estimated signal vn related to ↵n can be

obtained by the following tracking differentiator as
(

v̇n = vdn
v̇dn = �µ2

n[(vn � ↵n) + 2 vd
n

µn
]

(14)

where µn 2 R+ is the time constant. There exist ◆⇤n, ◆d⇤n 2 R+

satisfying kvn � ↵nk  ◆⇤n and kvdn � ↵̇nk  ◆d⇤n .
Step n+1. Define an error surface for the extended state

dynamics of the physical systems zn+1 = xn+1 � vn, and the
dynamics of zn satisfies żn = u̇+ F (x̄n)� vdn.

A parallel control law u is produced as follows
8
><

>:

an+1 = �kn+1zn+1 + vdn �WT
n Xn � zn

u̇ = ud

u̇d = �µ2
n+1

h�
u�

R
↵n+1dt

�
+ 2 ud

µn+1

i (15)

where µn+1 2 R+ denotes the time constant. There exist
◆⇤n+1, ◆

d⇤
n+1 2 R+ satisfying ku �

R
↵n+1dtk  ◆⇤n+1 and

kud � ↵n+1k  ◆d⇤n+1. Compared with the feedback control,
the proposed parallel control method only adds a differentiator
and will not increase the complexity significantly.

IV. MAIN RESULTS

Theorem 1. Consider the physical system in the MIMO strict-
feedback form with the dynamics (1) and the extended n+1th-
order dynamics (4). The proposed dynamic surface parallel
controller is chosen as the neural predictor-based artificial
system (3) and (6), the adaptive computational experiment (7)
and (8), and the parallel execution (9), (11), (13), and (15). If
Assumption 1 holds, all subsystems and the total closed-loop
system are input-to-state stable.

Proof: The total parallel control closed-loop system is a
cascade connection and can be divided into two subsystems.
For the artificial system, let x̃l = x̂l�xl, x̃n+1 = x̂n+1�xn+1,
W̃l = Wl � W ⇤

l , W̃n = Wn � W ⇤
n , ⇥̃l = ⇥l � W ⇤

l , ⇥̃n =
⇥n �W ⇤

n , and ◆a = x̄dd
n � ẋn+1, the subsystem consisting of

x̃l, x̃n+1, ⇥̃l, ⇥̃n, W̃l, and W̃n becomes as follows

⌃a :

8
>>>>>>>>><

>>>>>>>>>:

˙̃xl = �(kl + ⇢l)x̃l � W̃T
l Xl � "l

˙̃xn+1 = �(kn+1 + ⇢n+1)x̃n+1 � W̃T
n Xn � "n

˙̃⇥l = � �l

Tl
Xl(XT

l W̃l + "Tl )
˙̃Wl = ��l(Wl �⇥l)
˙̃⇥n = � �n

Tn
Xn(XT

n W̃n + "Tn + ◆Ta )
˙̃Wn = ��n(Wn �⇥n)

where ◆a, "l, and "n can be regarded as the inputs of the
subsystem ⌃a. Then, the unforced system ⌃a,0 with respect
to the subsystem ⌃a is represented by

⌃a,0 :

8
>>>><

>>>>:

˙̃xl = �(kl + ⇢l)x̃l � W̃T
l Xl

˙̃xn+1 = �(kn+1 + ⇢n+1)x̃n+1 � W̃T
n Xn

˙̃⇥k = � �k

Tk
Xk(XT

k W̃k), k = 1, ..., n
˙̃Wk = ��l(W̃k � ⇥̃k)

(16)

⌃a,0 can be proved to be globally exponentially stable
at the origin. By applying Lemma 4.5 in [22], the subsys-
tem ⌃a can be proved to be input-to-state stable. Define
Z̃ = [z̃T1 , ..., z̃

T
n+1]

T with z̃n = 03, ⇥̃ = [⇥̃T
1 , ..., ⇥̃

T
n ]

T,
W̃ = [W̃T

1 , ..., W̃T
n ]T, E1 = [kZ̃k, k⇥̃kF, kW̃kF]T, and

" = ["T1 , ..., "
T
n ]

T. For all t > t0 and ⌧ > t0, E1(t) satisfies

kE1(t)k max{�1(kE1(t)k, t� t0),

"(sup k"(⌧)k) + ◆a(sup k◆a(⌧)k)}
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where �1(·) is a class KL function, and "(·) and ◆a(·) are
class K1 functions. Merging (9), (11), (13), and (15) into (1)
and defining ◆k = vk�↵k with k = 1, ..., n+1, the subsystem
consisting of zl, zn, and zn+1 becomes as follows

⌃p :

8
><

>:

żl = �klzl + zl+1 � zl�1 � W̃T
l Xl + "l + ◆l

żn = �knzn + zn+1 � zn�1 + ◆n
żn+1 = �kn+1zn+1 � zn � W̃T

n Xn + "n + ◆n+1

where ◆l, "l and W̃l can be regarded as the inputs of the
subsystem ⌃p. Then, the unforced system ⌃p,0 with respect
to the subsystem ⌃p is given by

⌃p,0 :

8
><

>:

żl = �klzl + zl+1 � zl�1

żn = �knzn + zn+1 � zn�1

żn+1 = �kn+1zn+1 � zn.

(17)

⌃p,0 can be proved to be globally exponentially stable at
the origin. By applying Lemma 4.5 in [22], the subsystem
⌃a can be proved to be input-to-state stable. Define Z =
[zT1 , ..., z

T
n+1]

T and ◆ = [◆T1 , ..., ◆
T
n+1]

T. For all t > t0 and
⌧ > t0, Z(t) has

kZ(t)k max{�2(kZ(t)k, t� t0), %W̃ (sup kW̃ (⌧)kF)
%"(sup k"(⌧)k) + %◆(sup k◆(⌧)k)}

where �2(·) is a class KL function, and %W̃ (·), %"(·), and %◆(·)
are class K1 functions. The state W̃ of the subsystem ⌃a can
be regarded as an input of another subsystem ⌃p. By applying
Lemma 4.6 in [22], the total closed-loop system cascaded by
⌃a and ⌃p can be proved to be input-to-state stable. For all
t > t0 and ⌧ > t0, Z(t) has

kZ(t)k max{�2(kZ(t)k, t� t0),

%W̃ � ("(sup k"(⌧)k) + ◆a(sup k◆a(⌧)k)) (18)
%"(sup k"(⌧)k) + %◆(sup k◆(⌧)k)}.

According to Definition 4.4 and Theorem 4.6 in [22], (18)
guarantees that for any bounded "(t), ◆(t), and ◆a(t), Z(t)
will be bounded. When t increases, Z(t) will be ultimately
bounded by class K1 functions of sup k"(t)k, sup k◆(t)k, and
sup k◆a(t)k.

Remark 2. When the system (1) is subject to external dis-
turbances, we can design disturbance observers to observe
external disturbances. Besides, when the upper bound of
external disturbances is known, we can construct slide mode
terms to inhabit the influence of this issue [23]. It is convenient
to combine these approaches with the proposed method.

Remark 3. The proposed parallel control method is modu-
lar and can extend to other systems on condition that the
subsystems are still input-to-state stable. Besides, adaptive
approximators and tracking differentiators used herein are
alternatives. For example, the RBF network can replace the
echo state network, and other command filters can replace the
tracking differentiators.

Remark 4. The main challenge in designing the proposed
method is how to accurately identify ẋn+1 by using the

tracking differentiator. The accuracy of x̄dd
n will influence the

performance of the artificial system and the computational
experiments.

V. SIMULATION EXAMPLE

A simulation example of trajectory tracking of an au-
tonomous surface vehicle is presented in order to show the
performance and efficacy of the proposed method. The dy-
namics of the autonomous surface vehicle is
8
>>>>>>>>>><

>>>>>>>>>>:

⌘̇ = ⌫e
⌫̇e = u� f(⌘, ⌫e) + wi

f(⌘, ⌫e) = M⇤�1(C⇤⌘̇ +D⇤⌘̇)

R =

2

64
cos � sin 0

sin cos 0

0 0 1

3

75

M⇤ = RMRT, C⇤ = R[C �MRTṘ)]RT, D⇤ = RDRT

where ⌘ = [x, y, ]T 2 R3, x and y are the latitude coordinate
and the longitude coordinate in the earth-fixed coordinate
respectively,  denotes the yaw angle, ⌫e = [ū, v̄, r̄]T 2 R3,
ū, v̄, r̄ represent the surge velocity, sway velocity, and yaw ve-
locity in the earth coordinate respectively, u = M�1⇤R⌧ 2 R3

represents the control input, M = MT 2 R3⇥3 is the internal
matrix, R 2 R3⇥3 represents the rotation matrix satisfying
R�1 = RT, C 2 R3⇥3 denotes the Coriolis and centripetal
matrix, D 2 R3⇥3 denotes the damping term, and w 2 R3

denotes the external disturbances. Ref. [24] provides internal
parameters of matrices defined in the model of the autonomous
surface vehicle. The considered trajectory tracking occurs in
the part of Beishui Wan, Shanghai, China.

The control parameters are selected as below:
k1 = diag{3, 3, 0.3}, k2 = diag{10, 10, 10},
k3 = diag{10, 10, 10}, ⇢3 = diag{20, 20, 20},
�2 = 50, �2 = 1000, µ1 = 7, µ2 = 70, µ3 = 70,
and µa = 70. The virtual leader is chosen as
yr = [105 sin(vst), 105 cos(vst),�vst]T with vs = 0.009. The
parameters of the echo state network are selected as follows;
td = 0.01, c2 = 1, b2 = 1, �(s) = (1 � e�s)/(1 + e�s),
W⇠,2 and WX,2 are produced randomly, and WX,2 is a
sparse matrix. Fig. 1 depicts the trajectory of the autonomous
surface vehicle, and it can be seen that the autonomous
surface vehicle can track along the desired virtual leader. The
approximation performance of the echo state network in the
artificial system is depicted in Fig. 2. It is shown that the
echo state network can approximate uncertain nonlinearities
by using the proposed method.

VI. CONCLUSION

This brief investigates dynamic surface parallel control of
physical systems in the MIMO uncertain nonlinear strict-
feedback form. For the purpose of dealing with uncertain
nonlinearities, an artificial system is constructed based on
the echo state network. A high-order tuner-based adaptive
computational experiment is designed for the purpose of
training the weight of the neural network and raising the
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Fig. 1: The trajectory of the autonomous surface vehicle
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Fig. 2: Approximation performance of the echo state network
in the artificial system (ESN: echo state network)

convergence rate. The parallel execution consisting of virtual
control laws and a parallel control law is determined by
using an improved dynamic surface control method. The
theoretical analysis proves the input-to-state stability of the
resulting cascaded parallel control closed-loop system. The
simulation illustrates the performance of the proposed dynamic
surface parallel control method for MIMO uncertain nonlinear
strict-feedback systems. In future researches, it is desirable
to investigate the output-feedback parallel control problem.
Besides, it is rewarding to develop parallel controllers for
systems subject to practical constraints.
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