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Abstract—This paper investigates the optimal consensus prob-
lem for leader-follower multiagent systems (MASs) via event-
triggered control. Within a game-theoretic framework, a novel
optimal event-triggered consensus scheme is proposed to achieve
the dual optimization of control performance and sampling fre-
quency. Given that the impact on system performance, the control
input and the event-based sampling error are regarded as two
competitive players of the zero-sum game. In the MAS consensus,
each agent is to minimize its performance index against the
actions of neighboring agents, which can be formulated as the
differential graphical game. In the game-theoretic framework, the
optimal event-based control law and the optimal event-triggered
mechanism are derived by seeking the global Nash equilibrium.
Our designed sampling mechanism can not only maximize the
interevent interval with respect to the performance index but also
guarantee the exclusion of the Zeno behavior. Finally, simulation
results are conducted to validate the effectiveness of the proposed
optimal event-triggered consensus method.

Note to Practitioners—Consensus control of multiagent systems
(MASs) has been of great interest due to extensive engineering
applications, such as multivehicle formation, distributed opti-
mization, smart grids, and sensor networks. However, realistic
agents are usually only equipped with limited communica-
tion capability, which restricts the advancement of the MAS
consensus. This paper adopts the game-theoretic approach to
develop an optimal event-triggered consensus framework for
MASs, where the control input and its sampling error are
treated as competing players in a zero-sum game, and policy
pairs among neighboring agents are regarded as competing
players in a differential graphical game. The Nash equilibrium
solution of games establishes the optimal control policy and
the maximum triggering threshold, which is used to design the
optimal event-triggered mechanism with the maximum sampling
interval. Unlike prior event-triggered schemes focused solely on
stability, the key feature of the proposed framework is designed

This work is supported by the National Science and Technology Ma-
jor Project under Grant 2022ZD0119900, the National Natural Science
Foundation of China under Grants U2141234, U24A20260, 52201369,
and Hainan Province Science and Technology Special Fund under Grant
ZDYF2024GXJS003. (Corresponding author: Weidong Zhang.)

W. Wu is with the School of Automation and Intelligent Sensing, Shanghai
Jiao Tong University, Shanghai 200240, China, with the Department of Aero-
nautical and Aviation Engineering, The Hong Kong Polytechnic University,
Hong Kong, SAR, China, and also with the Research Centre for Low-Altitude
Economy, The Hong Kong Polytechnic University, Hong Kong, SAR, China
(e-mail: wtwu95@gmail.com).

W. Zhang is with the School of Automation and Intelligent Sens-
ing, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
wdzhang@sjtu.edu.cn).

L. Xu is with the Division of Decision and Control Systems, School
of Electrical Engineering and Computer Science, KTH Royal Institute of
Technology, and also affiliated with Digital Futures, 100 44, Stockholm,
Sweden (e-mail: lei5@kth.se).

Y. Zhang is with the Department of Automation, Shanghai University,
Shanghai 200444, China (e-mail: ybzhang@shu.edu.cn).

Y. Shi is with the Department of Mechanical Engineering, University of
Victoria, Victoria BC V8W 2Y2, Canada (e-mail: yshi@uvic.ca).

under the premise of both stability and optimality, which benefits
the balance between control performance and sampling efficiency.
The theoretical results and simulations show that the triggering
mechanism excludes Zeno behaviors, thereby ensuring practical
feasibility for hardware implementations.

Index Terms—Event-triggered mechanism, differential graphi-
cal game, multiagent systems, optimal consensus, zero-sum game.

I. INTRODUCTION

OVER the past decade, coordination of multiagent systems
(MASs) has emerged as an research hotspot due to

diverse engineering applications like multivehicle formation
[1]–[5], distributed optimization [6], [7], smart grids [8], [9],
and sensor networks [10], [11]. Consensus control, one core
issue of the coordination control, drives states of all agents to
reach agreement in practical scenarios, such as synchronizing
inter-vehicle spacing and speed in the platoon formation [12],
[13] and distributed energy management in smart grids [14]. In
reality, constrained communication capabilities of individual
agents pose a significant challenge for a central controller,
whereas distributed or decentralized controllers provide a more
realistic scheme due to no requirement for global information.
Therefore, it is challenging but essential to develop novel
distributed controllers for MASs.

Due to a pragmatic significance, many profound results
about consensus control problem have been reported including
academic and engineering fields [15]–[21]. Later on, optimal
consensus control has received considerable attention, which is
expected to simultaneously obtain better control performance
and consensus. Many efforts have been devoted to inves-
tigating the optimal consensus problem. In [22], structured
quadratic performance indices are derived to achieve the global
optimal control of linear MASs with a fixed and directed
topology. [23] and [24] further extend the result of [22] to
general linear MASs and discrete-time MASs with constrained
control inputs. In [25], the linear quadratic regulation is
introduced to design the optimal distributed controller for
reaching the consensus of quadrotors and mobile robots.
Moreover, distributed optimal control method based on date-
driven technique [26], model predictive control [27], and
dynamic average consensus [28] are developed for MASs. It
should be pointed out that practical systems (e.g., autonomous
aerial/surface/underwater vehicles) carry usually equipment
with limited energy and communication capabilities, which
leads to the implementation difficulty of aforementioned opti-
mal consensus methods via continuous communications. Thus,
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the development of resource-saving controllers is crucial to
improving the practicality.

As reviewed in the literature [29], [30], consensus con-
trol employ the continuous-time state or output information
from neighboring agents, which necessitates continuous con-
sumption of system resources. To mitigate this weakness,
the sampled-data control scheme provides a way to reduce
resource consumption, which only updates control laws or
exchanges information under certain specific conditions. Note
that the key step of event-triggered control (ETC) is to
develop appropriate event-triggering conditions, also called
event-triggered mechanisms (ETMs), for determining sam-
pling instants [31]. A common feature of ETMs lies in
the triggering function associated with the sampling error
bounded by some state- and/or time-dependent functions.
A time-dependent ETM is designed in [32] to bound the
measurement error for the asymptotic consensus. Different
from time-dependent threshold, [33] derives a state-dependent
threshold for the distributed static ETM, which guarantees
the positive lower bound on the average interevent interval.
In [34] and [35], adaptive technique is employed to the
development of ETMs. In [34], an online adaptive parameter is
introduced to derive a dynamic triggering function for avoiding
continuously monitoring the system state. [35] presents an
adaptive ETM capable of achieving event-triggered consensus
without any global information of topology graph. In contrast
to static ETMs, the dynamic triggering threshold designed in
[36] enlarges the inter-sampling interval between consecutive
events by introducing an internal variable. In [37], a distributed
ETM with a time-varying threshold is designed for leaderless
and leader-follower consensuses to reduce the information
transmission between agent and its neighbors. To seek a
tradeoff between convergence rate and sampling frequency,
[38] develops a dynamic triggering function to achieve the
designable minimum interevent interval. Other dynamic ETC
methods are also investigated, such as distributed dynamic
ETC [39] and fully distributed ETC [40], and edge-based
triggering mechanisms [41] and [42].

Recalling aforementioned results, these event-triggered con-
sensus methods have developed various triggering functions,
which are expected to achieve the largest possible triggering
interval on the premise of stability. It is noted that above design
schemes can not provide the interval-maximum sampling
condition and also oversight the relationship between control
performance and sampling frequency. Moreover, individual
performance index of all agents leads to the noncooperative
feature among them, which concerns the minimization of their
own cost functions. However, it is inadequate to solve opti-
mal event-triggered consensus problems with above methods.
Therefore, it is challenging but promising to simultaneously
take into account noncooperative relationship among agents
and co-optimality of both control performance and triggering
condition.

Motivated by the above discussions, this paper develops an
optimal event-triggered consensus method for leader-follower
MASs using game-theoretic approaches. The main contribu-
tions are presented as follows.

• In the game-theoretic framework, an optimal event-

triggered consensus control method is developed to si-
multaneously consider the optimalities of control per-
formance and event-triggered mechanism involving two
noncooperative game perspectives. With our proposed
optimal ETC method, the tradeoff between system perfor-
mance and sampling frequency is obtained by the global
Nash equilibrium seeking.

• Based on the min-max strategy and the zero-sum game
approach, the maximum inter-sampling interval with re-
spect to individual performance function is determined,
which is employed to derive the optimal event-triggered
mechanism. In contrast to the optimal ETC schemes
for single agent system in [43] and [44], our designed
mechanism is a distributed scheme to reduce information
exchanges among agents.

• According to the game algebraic Riccati and Hamilton-
Jacobi-Isaacs equations, the optimal control policy and
the sampling error are derived to guarantee both the
stability of the closed-loop system and the Zeno-free
behavior.

The rest of this paper is organized as below. Section II
introduces preliminaries and problem formulation. Section
III develops the optimal event-triggered consensus control
method and gives the stability analysis. Section IV provides
the simulation verification. Section V concludes this paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notations

Let N>0 and R>0 be the sets of positive integers and
nonnegative real numbers, respectively. For any n ∈ N>0,
1n and 0n are n× 1 column vectors with all elements equal
to one and zero, respectively. In and 0n×n denote the n× n
identity matrix and n×n matrix with all zeros. For brevity, I1:n
represents a integer set {1, ..., n}. Denote col(·) and diag(·)
as the column vector and block-diagonal matrix, sequentially.
⊗ is the Kronecker Product. ∥ · ∥ stands for the Euclidean
norm. λmin(·) and λmax(·) denote the minimum and maximum
eigenvalues of a matrix, respectively.

B. Graph Theory

Consider a system of N followers and one leader. The
communication topology of followers is depicted by a graph
G = {V, E} with V = I1:N and E ⊆ V × V being the
sets of vertices and edges, respectively. Define a neighbor
set of node i as Ni ≜ {j ∈ V|(i, j) ∈ E}, where (i, j)
stands for an information flow from node i to node j. The
graph G is undirected if (j, i) ∈ E for any (i, j) ∈ E . The
undirected graph G is connected if there is a path between
any node pair. The adjacency matrix of graph G is defined
as A = [aij ] ∈ RN×N with aii = 0, aij = 1 if (i, j) ∈ E ,
and aij = 0, otherwise. Define a topology among followers
and the leader as Ḡ = {V̄, Ē} with V̄ = V ∪ {0} and
Ē ⊆ V̄ × V̄ , where the information flow from the leader to the
follower is unidirectional. For the graph Ḡ, the corresponding
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degree matrix D ∈ R(N+1)×(N+1) and Laplacian matrix
L ∈ R(N+1)×(N+1) can be partitioned below

D =

[
0 0⊤

N

0N D1

]
and L =

[
0 0⊤

N

L0 L1

]
where D1 = diag(d1, ..., dN ) ∈ RN×N , L1 = D1 −
A = [lij ] ∈ RN×N , and L0 = col(−ai0) ∈ RN with
di =

∑
j∈Ni

aij + ai0, lii = di, and lij = −aij for i ̸= j.
Here, ai0 = 1 if the follower i can access the leader, and
ai0 = 0 otherwise.

C. Problem Formulation

Consider a swarm of MASs with the follower’s dynamics
described by

ẋi(t) = Axi(t) +Bui(t), i ∈ I1:N , (1)

and the leader’s dynamics given by

ẋ0(t) = Ax0(t) +Bu0(t) (2)

where x0(t) ∈ Rn and xi(t) ∈ Rn are states of agents.
u0(t) ∈ Rm and ui(t) ∈ Rm are inputs of agents. A ∈ Rn×n

and B ∈ Rn×m are the system matrices to be assumed that
the pair (A,B) is stabilizable. For brevity, the time variable
t is omitted in the upcoming development.

To begin with, a local error zi ∈ Rn of agent i with respect
to its neighbors is defined as follows

zi =
∑
j∈Ni

aij
(
xi − xj

)
+ ai0

(
xi − x0

)
. (3)

From (1)-(3), the dynamics of zi is yielded as

żi = Azi + diBui −
∑

j∈Ni∪{0}

aijBuj . (4)

In the consensus problem, each agent aims to synchronize
with its neighbors and minimize the performance index defined
by the following infinite horizon scalar function

Ji(zi,ui) =

∫ ∞

0

(
z⊤
i Qizi + u⊤

i Riui

)
dt (5)

where Qi = Q⊤
i ∈ Rn×n and Ri = R⊤

i ∈ Rm×m are
positive definite matrices.

Remark 1: It is observed from (4) that Ji(zi,ui) depends
not only on the behavior of agent i but also on that of its
neighbors j for j ∈ Ni. Then, function Ji(zi,ui) for agent i
can be explicitly rewritten as Ji(zi,ui,u−i) with respect to
neighbor policies with u−i = {u1, . . . ,ui−1,ui+1, . . . ,uN}.
Thus, (5) can be regarded as a differential graphical game
involving multiple players u−i. Herein, each player optimizes
its control policy against the neighbors’ policies to minimize
its performance index (5). The objective of this paper is to
derive the optimal control policy to achieve the consensus
under the differential graphical game framework.

Definition 1 ( [44]): The N -tuple control policy {u∗
i ,u

∗
−i}

is called a Nash equilibrium solution if the inequality

Ji(zi,u
∗
i ,u

∗
−i) ≤ Ji(zi,ui,u

∗
−i), ∀i ∈ I1:N . (6)

holds for all players of the differential graphical game.

To seek the Nash equilibrium of the graphical game, each
agent needs to update its policy ui using the local information
from communication channels. To save limited communication
sources, agent i only broadcasts the latest state xis = xi(tis)
to its neighbors and updates its policy uis = ui(tis) for t ∈
[tis, ti(s+1)), where {tis}∞s=0, s ∈ N>0 with ti0 = 0 is a
sequence of triggering instants for agent i, i ∈ I1:N . Then, the
local error dynamics of agent i with the event-based policy
uis can be expressed as follows

żi = Azi + diBuis −
∑
j∈Ni

aijBujs −−ai0Bu0. (7)

Before developing the ETM, define a error between the
actual input ui and the sampled input uis as follows

eis = uis − ui. (8)

Substituting (8) into (7), the local error dynamics of agent
i is rewritten as

żi =Azi + diB(ui + eis)−
∑
j∈Ni

aijB(uj + ejs)

− ai0Bu0. (9)

To save communication resources, the larger sampling error
eis may result in a certain degree of control performance
degradation, indicating that the sampling error plays a role
against the control input. Thus, the control input and sampling
error can be regarded as two players in a zero-sum game. Con-
sidering the impact of the sampling error eis, we reformulate
the performance index function Ji(zi,ui) for agent i as

Ji(zi,ui, eis)

=

∫ ∞

0

(
z⊤
i Qizi + u⊤

i Riui − µ2
ie

⊤
iseis

)
dt (10)

where µi ∈ R>0 is a constant.

Definition 2 ( [44]): The policy pair (u∗
i , e

∗
is) is called a

Nash equilibrium of the zero-sum game if the inequality

Ji(zi,u
∗
i , eis) ≤ Ji(zi,u

∗
i , e

∗
is) ≤ Ji(zi,ui, e

∗
is) (11)

holds for any players ui and eis, i ∈ I1:N .

Definition 3 ( [44]): The N -tuple policy pair
{(u∗

i , e
∗
is)}Ni=1 is called the global Nash equilibrium if

the inequality

Ji(zi,u
∗
i , eis,u

∗
−i, e

∗
−is) ≤ Ji(zi,u

∗
i , e

∗
is,u

∗
−i, e

∗
−is)

≤ Ji(zi,ui, e
∗
is,u

∗
−i, e

∗
−is) (12)

holds for each agent i, i ∈ I1:N .

The objective of this paper is to develop an optimal event-
triggered control method for the leader-follower consensus of
MASs such that: 1) the optimal consensus is achieved using
the formulation of differential graphical game and zero-sum
game; and 2) the positive minimum interevent interval under
the interval-maximum triggering mechanism is guaranteed to
exclude the Zeno behavior.
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To move on, the following standard assumption and neces-
sary lemmas are provided.

Assumption 1 ( [45]): The graph G is undirected and con-
nected, and at least one follower has access to the leader.

Lemma 1 ( [45]): Under Assumption 1, L1 is symmetric
and positive definite, which yields the following properties:

• All eigenvalues of L1 hold

0 < λ1(L1) ≤ λ2(L1) ≤ . . . ≤ λN (L1) = λmax(L1).

• There exists an orthogonal matrix TL1
such that

T⊤
L1
L1TL1 = Λ = diag{λ1(L1), λ2(L1), . . . , λN (L1)}.

Lemma 2 ( [46]): For positive definite matrices Q =
Q⊤ ∈ Rn×n and R = R⊤ ∈ Rm×m and a positive constant
µ, if the pair (A,B) is stabilizable and R−1 − Im/µ2 > 0
holds, then the symmetric positive definite matrix Pi = P⊤

i ∈
Rn×n is the unique solution of the following game algebraic
Riccati equation (GARE)

A⊤P + PA+Q− PB(R−1 − Im
µ2

)B⊤P = 0. (13)

III. MAIN RESULTS

This section presents the optimal event-triggered consensus
method including the optimal control law and the optimal
event-triggered mechanism.

A. Optimal Event-Triggered Consensus Scheme Design

To begin with, a value function for the performance index
Ji(zi,ui, eis) is given by

Vi(zi) =

∫ ∞

t

(
z⊤
i Qizi + u⊤

i Riui − µ2
ie

⊤
iseis

)
dτ (14)

for i ∈ I1:N . Then, the optimal value function V ∗
i (zi) for the

zero-sum game of ui and eis is defined as

V ∗
i (zi)

= min
ui

max
eis

∫ ∞

t

(
z⊤
i Qizi + u⊤

i Riui − µ2
ie

⊤
iseis

)
dτ. (15)

In view of the control policy uj and sampling error ej of
neighbor agent j for j ∈ Ni, the Hamiltonian function for
agent i from (9) and (14) is defined as

Hi(zi,ui, eis,∇Vi(zi))

= z⊤
i Qizi + u⊤

i Riui − µ2
ie

⊤
iseis

+∇V ⊤
i (zi)

(
Azi + diB(ui + eis)

−
∑
j∈Ni

aijB(u∗
j + e∗js)− ai0Bu0

)
(16)

for i ∈ I1:N with ∇Vi(zi) = ∂Vi(zi)/∂zi ∈ Rn.
Based on the minmax strategy, the Hamilton-Jacobi-Isaacs

(HJI) equation associated with V ∗
i (zi) is formulated as [47]

min
ui

max
eis

Hi(zi,ui, eis,∇V ∗
i (zi)) = 0. (17)

Subsequently, the optimal control policy u∗
i and the optimal

sampling error e∗is are derived by solving ∂Hi/∂ui = 0 and
∂Hi/∂eis = 0 and presented as follows

u∗
i = −di

2
R−1

i B⊤∇V ∗
i (zi), (18)

e∗is =
di
2µ2

i

B⊤∇V ∗
i (zi). (19)

Substituting (18) and (19) into the HJI equation (17), it
follows that

0 =z⊤
i Qizi −

d2i
4
∇V ∗⊤

i (zi)BR−1
i B⊤∇V ∗

i (zi)

+
d2i
4µ2

i

∇V ∗⊤
i (zi)BB⊤∇V ∗

i (zi) +∇V ∗⊤
i (zi)Azi

−
∑
j∈Ni

aij∇V ∗⊤
i (zi)B(u∗

j + e∗js)

− ai0∇V ∗⊤
i (zi)Bu0. (20)

The optimal sampling error e∗is (19) provides the worst case
input error, which can be employed to achieve the optimal
consensus of MASs with the maximum sampling interval.
Then, a triggering function ℏ(eis,∇V ∗

i (zi)) associated with
e∗is is defined as follows

ℏ(eis,∇V ∗
i (zi))

= e⊤iseis −
d2i
4µ4

i

∇V ∗⊤
i (zi)BB⊤∇V ∗

i (zi),
(21)

which is used to develop the following optimal ETM to
determine the next triggering instant

ti(s+1) = inf{t > tis | ℏ(eis,∇V ∗
i (zi)) ≥ 0}. (22)

Then, it derives from (18) that the optimal event-triggered
control input is

u∗
i (zis) = −di

2
R−1

i B⊤∇V ∗
i (zis), (23)

where zis = zi(tis) ∈ Rn is the sampled value of zi(t) at the
triggering instant tis.

Remark 2: Traditional ETC schemes, such as static ETMs
[48]–[51], dynamic ETMs [52]–[54], and adaptive ETMs [55],
[56], are designed under the premise of system stability, where
the sampling interval is expected to be as large as possible
in order to reduce communication frequency and controller
update. However, these approaches neglect the optimality of
the triggering condition. To achieve the maximum interval
sampling, this paper introduces a sampling error into the
performance index and simultaneously optimizes it with the
control input in a zero-sum game framework. Both the optimal
control policy and triggering threshold are derived to achieve
the desired system performance under the maximal sampling
interval. The codesign scheme establishes a bridge between
the sampling and cost to seek an equilibrium solution.

To seek the Nash equilibrium solution, assume that the
optimal value function V ∗

i (zi) has the following form

V ∗
i (zi) = αiz

⊤
i Pizi, i ∈ I1:N (24)
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where αi ∈ R>0 is a scalar gain; Pi = P⊤
i > 0 is the solution

of the GARE given by Lemma 2.
Using the function V ∗

i (zi), the optimal policies from (18)
and (19) are obtained below

u∗
i = −αidiR

−1
i B⊤Pizi, (25)

e∗is =
αidi
µ2
i

B⊤Pizi. (26)

During the interevent time, the event-based optimal policies
of agent i are given by u∗

is = u∗
i (zis) and e∗is = e∗is(zis)

for t ∈ [tis, ti(s+1)). Within the differential graphical game
framework, agent i receives the control policy of neighboring
agents as u∗

js = u∗
j (zjs) and e∗js = e∗js(zjs). Then, substitute

them into the resulting closed-loop system (9) and rewrite the
following form

żi =Azi −
N∑
j=0

aijαidiB(R−1
i − Im

µ2
i

)B⊤Pi

(
zi + eiz

)
+

∑
j∈Ni

aijαjdjB(R−1
j − Im

µ2
j

)B⊤Pj

(
zj + ejz

)
− ai0Bu0 (27)

with eiz(t) = zis − zi for t ∈ [tis, ti(s+1)), i ∈ I1:N .

B. Stability Analysis

To proceed the subsequent analysis, a standard assumption
for the boundedness for the gradient ∇V ∗

i (zi) is made.

Assumption 2 ( [57]): For any ϵi > 0, there exists δi > 0
such that

∥∇V ∗
i (zi)∥ ≤ ϵi∥zi∥, ∀∥zi∥ ≤ δi. (28)

The following theorem states that the policy pair (u∗
i , e

∗
is)

is the Nash equilibrium defined in Definition 3.

Theorem 1: Under Assumption 2, the event-based system
(9) with the optimal ETM (22) is asymptotically stable, and
the policy pair {(u∗

i , e
∗
is)}Ni=1 constitutes the global Nash

equilibrium.

Proof: Choose V ∗
i (zi) as the Lyapunov function candidate.

Then, it gets from (20) that V̇ ∗
i (zi) holds

V̇ ∗
i (zi) =∇V ∗⊤

i

(
Azi + diBu∗

i + diBe∗is

−
∑
j∈Ni

aijB(u∗
j + e∗j )− ai0Bu0

)
=− z⊤

i Qizi −
d2i
4
∇V ∗⊤

i (zi)BR−1
i B⊤∇V ∗

i (zi)

+
d2i
4µ2

i

∇V ∗⊤
i (zi)BB⊤∇V ∗

i (zi). (29)

If the selection of Ri and µi satisfies R−1
i − Im/µ2

i > 0,
then it yields under Assumption 2 that

V̇ ∗
i (zi) ≤− λmin(Qi)∥zi∥2

− d2i
4
λmin(R

−1
i − Im

µ2
i

)∇V ∗⊤
i (zi)BB⊤∇V ∗

i (zi)

≤− λmin(Qi)∥zi∥2

− d2i ϵ
2
i

4
λmin(R

−1
i − Im

µ2
i

)∥BB⊤∥∥zi∥2

≤− ℓi∥zi∥2 (30)

with ℓi = λmin(Qi)+d2i ϵ
2
i ∥BB∥λmin(R

−1
i −Im/µ2

i )/4 > 0,
which yields that V̇ ∗

i (zi) ≤ 0. Consequently, it is concluded
that the event-based system in (9) is stable, and that all agents
using the optimal control input and the optimal ETM (22) can
reach the consensus.

Remark 3: In this paper, Qi, Ri, µi, and αi are critical pa-
rameters that determine the system performance and resource
conservation. To guide practical implementation, a tuning
strategy is provided as follows. Specifically, the selection of
Qi, Ri, and µi should guarantee that the function V ∗

i (zi) is
negative definite. The larger Qi can accelerate the convergence
of consensus error but may require more control efforts.
The larger Ri results in lower control at the cost of slower
convergence. According to (14), (19), (22), and (30), a smaller
µi allows a larger interevent interval to reduce the triggering
number but degrade the consensus performance, that implies
the stronger robustness against event-based error. The larger
αi raises both the magnitude of control input and triggering
threshold, which accelerate convergence of the value function.
Therefore, Qi, Ri, µi, and αi should be chosen to adjust
the tradeoff between the expected performance and sampling
frequency.

In what follows, we will illustrate that the policy pair
(u∗

i , e
∗
is) constitutes the Nash equilibrium of the game. Given

that V ∗
i (zi(∞)) = V ∗

i (0) = 0, the function Ji(zi,ui, eis) in
(10) is reformulated as

Ji(zi,ui, eis)

=

∫ ∞

0

(z⊤
i Qizi + u⊤

i Riui − µ2
ie

⊤
iseis)dt

+ V ∗
i (zi(0)) +

∫ ∞

0

∇V ∗⊤
i (zi)

(
Azi + diBui

+ diBeis −
∑
j∈Ni

aijB(uj + ejs)− ai0Bu0

)
dt. (31)

According to the fact that di∇V ∗⊤
i Bui = −2u∗⊤

i Riui and
di∇V ∗⊤

i Beis = 2µ2
ie

∗⊤
is eis from (18) and (19), it implies that

Ji(zi,ui, eis)

=

∫ ∞

0

(
z⊤
i Qizi + (ui − u∗

i )
⊤Riui − u⊤

i Riu
∗
i

− µ2
i (eis − e∗is)

⊤eis + µ2
ie

⊤
ise

∗
is

)
dt+ V ∗

i (zi(0))

+

∫ ∞

0

∇V ∗⊤
i

(
Azi −

∑
j∈Ni

aijB(uj + ej)− ai0Bu0

)
dt.

Since (ui − u∗
i )

⊤Riui − u⊤
i Riu

∗
i = (ui − u∗

i )
⊤Ri(ui −

u∗
i ) − u∗⊤

i Riu
∗
i and −µ2

i (eis − e∗is)
⊤eis + µ2

ie
∗⊤
is eis =

−µ2
i (eis − e∗is)

⊤(eis − e∗is) + µ2
ie

∗⊤
is e∗is, we rewrite

Ji(zi,ui, eis) as

Ji(zi,ui, eis) = V ∗
i (zi(0)) +

∫ ∞

0

(
z⊤
i Qizi + u∗⊤

i Riu
∗
i

− µ2
ie

∗⊤
is e∗is +∇V ∗⊤

i

(
Azi + diBu∗

i + diBe∗is − ai0Bu0
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−
∑
j∈Ni

aijB(uj + ej)
))

dt+

∫ ∞

0

(
(ui − u∗

i )
⊤Ri(ui − u∗

i )

− µ2
i (eis − e∗is)

⊤(eis − e∗is)
)
dt.

Suppose that neighbor policies employ uj = u∗
j and ejs =

e∗js. Then, one obtains from (17) that

Ji(zi,ui, eis) = V ∗
i (zi(0)) +

∫ ∞

0

(
(ui − u∗

i )
⊤Ri(ui − u∗

i )

− µ2
i (eis − e∗is)

⊤(eis − e∗is)
)
dt. (32)

Further, (32) is given by the following cases

Ji(zi,ui, eis) =

V ∗
i (zi(0)) +

∫ ∞

0

(ui − u∗
i )

⊤Ri(ui − u∗
i )dt,

for ui ̸= u∗
i , eis = e∗is,

V ∗
i (zi(0)), for ui = u∗

i , eis = e∗is,

V ∗
i (zi(0))−

∫ ∞

0

µ2
i (eis − e∗is)

⊤(eis − e∗is)dt,

for ui = u∗
i , eis ̸= e∗is.

(33)

As a result, it follows from (33) that Ji(zi(0),u∗
i , eis) ≤

Ji(zi(0),u
∗
i , e

∗
is) ≤ Ji(zi(0),ui, e

∗
is). For the zero-sum game

of players ui and eis, the control input u∗
i is the optimal solu-

tion to minimize Ji(zi,ui, eis) against the maximal sampling
interval e∗is. Moreover, the policy pair (u∗

i , e
∗
is) also minimizes

Ji(zi,ui, eis) against the neighbor pair (u∗
j , e

∗
js) for j ∈ Ni.

When the condition holds for each agent i for i ∈ I1:N , then
{(u∗

i , e
∗
is)}Ni=1 constitutes the global Nash equilibrium of the

differential graphical game. □

Remark 4: For traditional event-triggered optimal con-
trol schemes in [58] and references therein, one has
Ji(zi(0),u

∗
i ) → V ∗

i (zi(0)) as the quantization term is close
to zero by increasing the sampling frequency, which asymp-
totically approaches the performance of the time-triggered
controller. By contrast, our game-based scheme establishes
directly that the optimal value holds Ji(zi(0),u

∗
i , e

∗
is) =

V ∗
i (zi(0)) from (33). Therefore, it shows that our proposed

method presents a superior optimization result to traditional
control schemes.

To facilitate the subsequent analysis, matrices Pi, Qi, and
Ri, as well as the parameter µi of all agent are set to be
same, i.e., Pi ≜ P , Qi ≜ Q, Ri ≜ R, and µi ≜ µ.
Denote z = col(z1, ...,zN ), ez(t) = col(e1z(t), ..., eNz(t)),
and α = diag(α1, ..., αN ). Then, rewrite the resulting closed-
loop system (27) as the following compact form

ż =
(
IN ⊗A−L1D1α⊗B(R−1 − Im

µ2
)B⊤P

)
z

−
(
L1D1α⊗B(R−1 − Im

µ2
)B⊤P

)
ez(t)

+ (L0 ⊗B)u0. (34)

Theorem 2: Consider the MAS (1) with the optimal event-
triggered control policy (23), the optimal value function (24),
and the optimal event-triggered mechanism (22). Under As-
sumptions 1 and 2 and αi ≥ 1/(2min{di}λmin(L1)), we

have 1) if the input of the leader is zero, the system (34) is
exponentially stable; 2) if the input of the leader is bounded,
the system (34) is input-to-state stable.

Proof: Consider a Lyapunov function candidate as

L = z⊤(L1 ⊗ P )z + z⊤
s (L1 ⊗ P )zs (35)

with zs = col(z1s, ...,zNs).
Case 1: For t ∈ (tis, ti(s+1)), s ∈ {0, 1, ...}, the event-based

error zis holds a constant, which implies that the derivative of
z⊤
s (L1 ⊗ P )zs is equal to zero.
Differentiating L along (34), we have

L̇ =z⊤
(
L1 ⊗ (A⊤P + PA)

)
z

− z⊤
(
αD1L1 ⊗ PB

(
R−1 − Im

µ2

)
B⊤

)
(L1 ⊗ P )z

− z⊤(L1 ⊗ P )
(
L1D1α⊗B

(
R−1 − Im

µ2

)
B⊤P

)
z

− 2z⊤
(
L2

1D1α⊗ PB
(
R−1 − Im

µ2

)
B⊤P

)
ez(t)

− 2z⊤(L1 ⊗ P )(L0 ⊗B)u0. (36)

Substituting (13) into (36), L̇ is further given by

L̇ =− z⊤(L1 ⊗Q)z

− z⊤
(
(2L2

1D1α−L1)⊗ PB(R−1 − Im
µ2

)B⊤P
)
z

− 2z⊤
(
L2

1D1α⊗ PB(R−1 − Im
µ2

)B⊤P
)
ez(t)

− 2z⊤(L1 ⊗ P )(L0 ⊗B)u0. (37)

According to Lemma 1, it follows that L1 = TL1ΛT⊤
L1

and
L2

1 = TL1Λ
2T⊤

L1
. Utilizing µ2Im > R, one has

z⊤(L1 ⊗Q)z = ζ⊤(Λ⊗Q)ζ =

N∑
i=1

λiζ
⊤
i Qζi, (38)

z⊤(L1L0 ⊗ PB)u0 = ζ⊤(ΛT⊤
L1
L0 ⊗ PB)u0, (39)

z⊤
(
L2

1D1α⊗ PB(R−1 − Im
µ2

)B⊤P
)
ez(t)

= ζ⊤
(
Λ2T⊤

L1
D1α⊗ PB(R−1 − Im

µ2
)B⊤P

)
ez(t), (40)

and

z⊤
(
(2L2

1D1α−L1)⊗ PB(R−1 − Im
µ2

)B⊤P
)
z

≥ z⊤
(
(2αdL2

1 −L1)⊗ PB(R−1 − Im
µ2

)B⊤P
)
z

= z⊤(TL1
⊗ Im)

(
(2αdΛ2 −Λ)⊗ PB(R−1 − Im

µ2
)

×B⊤P
)
(T⊤

L1
⊗ In)z

= ζ⊤
(
(2αdΛ2 −Λ)⊗ PB(R−1 − In

µ2
)B⊤P

)
ζ, (41)

where α = mini∈I1:N {αi}, d = mini∈I1:N {di}, and ζ =
col{ζ1, . . . , ζN} = (T⊤

L1
⊗ In)z.

Based on the results in (38)-(41), L̇ is presented as

L̇ ≤−
N∑
i=1

λiζ
⊤
i Qζi
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− ζ⊤
(
(2αdΛ2 −Λ)⊗ PB(R−1 − Im

µ2
)B⊤P

)
ζ

− 2ζ⊤
(
Λ2T⊤

L1
D1α⊗ PB(R−1 − Im

µ2
)B⊤P

)
ez

− 2ζ⊤(ΛT⊤
L1
L0 ⊗ PB)u0. (42)

It is clear that we choose α ≥ 1/(2dλmin(L1)) such
that (2αdΛ2 − Λ) ⊗ PB(R−1 − Im/µ2)B⊤P is positive
semidefinite. Then, it follows that

L̇ ≤−
N∑
i=1

λiζ
⊤
i Qζi

+
1

γ1
ζ⊤(Λ2 ⊗ PBB⊤P

)
ζ + γ1u

⊤
0 (L

⊤
0 L0 ⊗ Im)u0

+
1

γ2
ζ⊤(Λ4 ⊗ PBB⊤P

)
ζ + γ2e

⊤
z (D

2
1α

2 ⊗M)ez

(43)

where M = PB(R−1 − Im/µ2)2B⊤P , and γ1 and γ2 are
positive constants.

According to the optimal ETM (22), it gets that ℏ ≤ 0 for
the interevent interval t ∈ (tis, ti(s+1)), namely,

e⊤iseis ≤ e∗⊤is e∗is. (44)

Furthermore, it yields from (8) and (25) that eis =
−αidiR

−1B⊤P (zis−zi) = −αidiR
−1B⊤Peiz , which and

(26) are substituted into the inequality (44). Then, we have
e⊤izPBR−2B⊤Peiz ≤ z⊤

i PBB⊤Pzi/µ
4, which further

derives that e⊤izPBB⊤Peiz ≤ z⊤
i PBB⊤Pzi using the

condition R−1 > Im/µ2. To move on, it follows that e⊤izeiz ≤
λmax(PBB⊤P )z⊤

i zi/λmin(PBB⊤P ). Noting that the fact
z⊤z = ζ⊤(T⊤

L1
TL1 ⊗ Im)ζ = ζ⊤ζ, then one has

L̇ ≤ −θ1ζ
⊤ζ + θ2u

⊤
0 u0 (45)

with

θ1 =λ1λmin(Q)− γ1λ
4
1 + γ2λ

2
1

γ1γ2
∥PBB⊤P ∥

− γ2ᾱ
2d̄2∥M∥λmax(PBB⊤P )

λmin(PBB⊤P )
, (46)

θ2 =γ1∥L0∥2, (47)

where ᾱ = maxi∈I1:N {αi} and d̄ = maxi∈I1:N {di}. Choose
appreciate γ1, γ2, and α such that θ1 > 0. When the leader
holds the zero input, i.e. u0 = 0m, the resulting system
(34) is exponentially stable, which implies from (45) that
limt→∞ z = 0nN exponentially. If the input u0 is bounded
satisfying ∥u0∥ ≤ ū0 with ū0 ∈ R>0, we have

L̇ ≤ −θ1(1− ξ)ζ⊤ζ < 0

for ∥ζ∥ ≥
√
θ2/(θ1ξ)ū0 with 0 < ξ < 1. Then, it is concluded

the system (27) is input-to-state stable.
Case 2: For the discrete instant t = ti(s+1), s ∈ {0, 1, ...},

the difference of a Lyapunov function Li = z⊤
i Pzi+z⊤

isPzis
for agent i is presented as

∆Li = Li(ti(s+1))− Li(t
−
i(s+1)) = ∆Li1 +∆Li2 (48)

with ∆Li1 = zi(ti(s+1))
⊤Pzi(ti(s+1)) − zi(t

−
i(s+1))

⊤P×
zi(t

−
i(s+1)) and ∆Li2 = z⊤

i(s+1)Pzi(s+1) − z⊤
isPzis. Accord-

ing to the triggering mechanism (22), it leads to ∆Li1 ≤ 0
and ∆Li2 ≤ −κ(∥∆zi(s+1)∥) for ∀t ∈ (ts, ti(s+1)), where
∆zi(s+1) = zi(s+1) − zis and κ(·) is a class-K function.
Then, it shows that the function Li, i ∈ I1:N is decreasing
at the instant ti = ti(s+1), s ∈ {0, 1, ...}.

According to the resulting conclusion, it shows that all error
signals of the closed-loop system are bounded. □

To proceed, we will prove that Zeno-free behavior can be
guaranteed using our proposed optimal ETM.

Theorem 3: Under the conditions given in Theorem 2, it
guarantees the existence of a positive minimum sampling
interval and exclusion of Zeno behavior for each agent.

Proof: Taking the derivative of eiz(t), we have

ėiz(t) = −żi, (49)

which implies from (27)

∥ėiz(t)∥

= ∥Aeiz(t)−Azis + αid
2
iB(R−1

i − Im
µ2
i

)B⊤Pizis

−
∑
j∈Ni

aijαjdjB(R−1
j − Im

µ2
j

)B⊤Pjzj(tjs′ ) + ai0Bu0∥

≤ ∥A∥∥eiz(t)∥+ ∥B∥Fū0 + βi (50)

for t ∈ [tis, ti(s+1)), i ∈ I1:N , where βi =
max ∥Azis−αid

2
iB(R−1

i −Im/µ2
i )B

⊤Pizis+
∑

j∈Ni
aij×

αjdjB(R−1
j − Im/µ2

j )B
⊤Pjzj(tjs′ )∥ and tjs′ =

argmaxs∈{0,1,...}{tjs|tjs ≤ t, j ∈ Ni}.
By solving the inequality (50), it obtains

∥eiz(t)∥ ≤βi + ∥B∥Fū0

∥A∥
(exp(∥A∥(t− tis))− 1) (51)

which yields that the sampling interval ∆ti(s+1) = ti(s+1)−tis
satisfies

∆ti(s+1) ≥
1

∥A∥
ln

∥A∥∥eiz(ti(s+1))∥+ βi + ∥B∥Fū0

βi + ∥B∥Fū0
.

In what follows, the minimum sampling interval ∆ti,min =
min{∆tis}s=1,2,... is yielded as follow

∆ti,min =
1

∥A∥
ln(Ψi,min + 1) (52)

with Ψi,min being the minimum value of Ψi =
∥A∥∥eiz(ti(s+1))∥/(βi + ∥B∥Fū0) for t ∈ [tis, ti(s+1)),
s ∈ {0, 1, ...}. Obviously, we have ∆ti,min > 0, which
guarantees that Zeno behavior is excluded under the proposed
triggering mechanism (22). The proof is completed. □

IV. SIMULATION RESULTS

This section provides a simulation example to validate the
proposed optimal event-triggered consensus method.
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A. Simulation Setup

Consider the MASs consisting of six follower agents and
one leader agent, whose Laplacian matrix is presented by

L =



0 0 0 0 0 0 0
−1 3 −1 0 0 0 −1
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 −1 0 0 0 −1 2


.

The system matrices in [52] are selected as
A = [03×3, I3;A1,A2] and B = [03×3; I3] with
A1 = [0, 0, 0; 0, 3 ∗ 0.0012, 0; 0, 0,−0.0012] and
A2 = [0, 0.002, 0;−0.002, 0, 0; 0, 0, 0]. The initial
states of leader and follower agents are set as
x0(0) = col(0, 0, 0, 0), x1(0) = col(0, 5, 2, 0, 0, 0),
x2(0) = col(−2, 2, 1, 0, 0, 0), x3(0) = col(−3,−3, 1, 0, 0, 0),
x4(0) = col(1,−5,−1, 0, 0, 0), x5(0) = col(−3,−3, 3, 0,
0, 0), and x6(0) = col(4, 3,−2, 0, 0, 0). Other parameters are
set as u0 = 0, Qi = I4, Ri = I2, µi = 5, and αi = 2 for
i ∈ I[1:6].

B. Effectiveness Validations

Under the conduction of the developed method and simula-
tion setting of subsection IV-A, simulation results are plotted
in Figs. 1-5. In particular, Fig. 1 depicts the trajectories of
event-based local errors zi1s, zi2s, zi3s, and zi4s for i ∈ I[1:6],
which shows that the consensus of all follower agents is
achieved. In Fig. 2, the sampling optimal policies u∗

i1s and
u∗
i2s are depicted. Fig. 3 depicts the sampling interval of each

follower agent from the current triggering time to the previous
triggering one. In Fig. 4, two terms of the triggering function
ℏ(eis,∇Vi(zi)) for i ∈ I[1:6] are drawn to show the triggering
conditions. Fig. 5 presents the sampling count curves of all
agents. The triggering ratios relative to the total count of
continuous sampling of each agent is calculated and recorded
in TABLE I. Moreover, TABLE I also lists the maximum
sampling intervals of each agent in Fig. 3 and triggering
counts in Fig. 4. It is found that the developed event-triggered
mechanism (22) ensure no Zeno behavior.

TABLE I: The maximum sampling interval, triggering count,
and triggering ratio.

Agent Maximum Interval Triggering Count Triggering Ratio

1 0.86s 148 7.40%
2 0.99s 158 7.90%
3 1.18s 101 5.05%
4 1.05s 104 5.20%
5 1.02s 99 4.95%
6 1.26s 89 4.45%

V. CONCLUSION

This paper investigates a game-based optimal event-
triggered consensus method for MASs. Specifically, in the
zero-sum game framework, a trade-off scheme between the
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Fig. 1: Evolutions of event-based local errors of all agents.
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Fig. 2: The sampling inputs of all agents.

performance index and sampling frequency is presented, where
the optimal sampling interval can not only save communi-
cation resources but also minimize the corresponding perfor-
mance index. Based on the differential graphical game theory,
the optimal control law can drive neighboring agents to achieve
the global Nash equilibrium with the information exchanges
under the optimal event-triggered mechanism. Moreover, the
designed optimal event-triggered mechanism can exclude the
Zeno behavior by guaranteeing the positive minimum inter-
event interval. Simulation results illustrated the effectiveness
of the proposed optimal event-triggered consensus control
method. Future works will take into consideration optimal
event/self-triggered consensus problem of practical systems.
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