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Abstract—In this brief, we investigate the multiple parameter-
ized paths-guided distributed maneuvering problem of a swarm
of simplified unmanned aerial vehicles (UAVs) using a tunnel
prescribed performance (TPP) strategy under directed commu-
nication. The primary focus of this paper lies in establishing a
distributed TPP-based path maneuvering controller to achieve
the desired cooperative performance. Firstly, a kinematic control
law is designed by using the TPP strategy to limit the overshoot
of the distributed path maneuvering error in transient and steady
process. Secondly, an update law is developed for each path
variable based on a control effort minimization method. Next,
a total control law is designed by using a distributed neural
predictor (DNP) at the kinetic level, where the DNP is constructed
based on the information of neighbors to estimate uncertainties in
the kinetics of UAVs. Then, via the Lyapunov analysis, practical
distributed path maneuvering of multiple UAVs is achieved,
ensuring the uniform ultimate bounded stability of the total
closed-loop system through the proposed method. Finally, the
effectiveness of the proposed approach for UAV swarms is
validated via simulation results.

Index Terms—Unmanned aerial vehicles (UAVs), path maneu-
vering, tunnel prescribed performance (TPP), distributed neural
predictor (DNP).

I. INTRODUCTION

RECENTLY, cooperative control has emerged as one
of the most prominent research areas, given its wide

applications in various engineering fields [1]–[3]. According
to characteristics of guidance, cooperative control primarily
focuses on target tracking [4], [5], trajectory tracking [6],
[7], and path maneuvering/following [8]–[10]. Specially, path
maneuvering-based cooperative control aims to coordinate
the movement of all vehicles along several parameterized
paths [8]–[10]. In [8], a path maneuvering control method is
proposed and a control effort reducing scheme is designed for
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the path update. In [9], a single path-guided consensus maneu-
vering control method is designed for nonlinear systems based
on the leader-following scheme. In [10], a modular distributed
maneuvering controller is designed for nonlinear multi-agent
systems based on neural predictors. The above results in [8]–
[10] focus on numerical models and are naturally expanded
to UAV swarms [11]. However, the above path maneuvering
control methods consider ideal system performances. In prac-
tical applications, performance constraints cannot be neglected
easily. These constraints may include overshoot and limitations
of tracking error [11].

Funnel control is commonly employed to address the chal-
lenge of initial error convergence [1], [12]–[14]. As one
of the important branches within funnel control, prescribed
performance control (PPC) provides an efficient tool via
combining error transformation and prescribed performance
to enhance both stability and performance constraints [13].
Many PPC methods have been reported [13], [14], but these
methods may face the loose of performance constraints due to
the presence of distributed funnel boundaries and symmetric
global performance functions. To overcome this issue, an im-
proved tunnel prescribed performance (TPP) control strategy
is proposed, which is introduced to not only have a concise
form but also achieve smaller overshoot performance [15],
[16]. Although some TPP-based control problems have been
studied gradually, it should be noted that the TPP-based path
maneuvering problem is still open.

Besides, in many path maneuvering methods, neural pre-
dictors are introduced as adaptive estimators, such as adaptive
neural predictors [10], data-driven neural predictors [17], and
high-order tuner-based neural predictors [18]. These neural
predictors employ a local learning strategy, which may en-
counter limitations in generalization ability. Thus, there is
a need to develop a new distributed learning-based neural
predictor to enhance the performance of estimators.

This brief investigates the distributed path maneuvering of
UAV swarms under the directed communication. Distributed
path maneuvering finds applications in various scenarios.
For example, envision a scenario where multiple UAVs are
involved in a search within a predefined area delineated by
several parameterized paths. Some of UAVs act as leaders,
traversing along these parameterized paths, while the remain-
ing UAVs follow the guidance of these leader UAVs. This
challenge can be effectively tackled using distributed path
maneuvering methods. In this paper, the kinetics of the UAV
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is subject to uncertainties and external disturbances. To reduce
the overshoot and cover uncertainties, we develop a distributed
path maneuvering controller for the UAV swarm based on a
tunnel prescribed performance (TPP) strategy and a distributed
neural predictor (DNP). The key contributions of this concise
study are outlined as follows.

1) In contrast to some of cooperative maneuvering con-
trol techniques proposed in [9], [10] under the ideal
performance, we consider the prescribed performance
of the distributed maneuvering error, and a distributed
TPP-based path maneuvering controller is developed to
ensure the prescribed performance.

2) In contrast to some of cooperative maneuvering control
techniques in [10], [17]–[19] using local learning-based
neural predictors, we construct a DNP in the proposed
distributed TPP-based path maneuvering controller. The
proposed DNP is under the distributed learning strategy.
This implies that the UAV can update the weight using
the information from its neighbors, thereby enhancing
its generalization ability.

Notations: sign(·) denotes the signum function; | · |, || · ||,
and || · ||F correspond to the magnitude of a real number, the
2-norm of a vector, and the F-norm of a matrix, respectively;
exp(·) denotes the exponential function; f inv(·) ∈ Rn×n is the
inverse of the function f(·); λmin(·) and λmax(·) represent the
minimum eigenvalue and the maximum eigenvalue of matrix.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Graph Theory

To describe the communication among multiple virtual lead-
ers and UAVs, a directed graph is described as G = {O, E}.
O = {OL,OF } is the nodes set with OL being the subset
consisting of virtual leaders and OF being the subset of UAVs.
E = {(i, j) ∈ O × O} denotes the set of edge. For the
ith UAV, define its neighbor set as Ni = {NL

i ,NF
i }, where

NL
i = {j ∈ OL|(i, j) ∈ E} and NF

i = {j ∈ OF |(i, j) ∈ E}.
An adjacency matrix associated with G is defined as A =
[aij ] ∈ RN×N , where aij = 1 for (j, i) ∈ E and aij = 0
otherwise. Correspondingly, a degree matrix D connected
with G is characterized as D = diag{di} ∈ RN×N with
di =

∑N
j=1 ai,j . Additionally, a Laplacian matrix associated

with G is defined as L = D −A.

B. Problem formulation

This paper investigates distributed path maneuvering of
a swarm consisting of M UAVs and N -M virtual leaders,
depicted in Fig. 1 . Inspired by [20], the model of the ith UAV
in the swarm can be divided into two distinct subsystems: one
is the outer-loop path maneuvering subsystem and the other
one is the inner-loop kinetic control subsystem. We consider a
simplified UAV model, such that attitude dynamics is ignored.
The dynamics of the ith UAV can be represented by{

ṗi(t)=vi(t), i=1, 2, ...,M

v̇i(t)=f i(pi,vi, t)+ui(t)
(1)

where f i(pi,vi, t) ∈ R3 := βpipi(t)+βvivi(t)+wi,d(t) de-
notes uncertain nonlinearities, βpi ∈ R3×3 and βvi ∈ R3×3 are
two unknown parameter matrices, pi(t) = [pi,x, pi,y, pi,z]

T ∈
R3, vi(t) = [vi,x, vi,y, vi,z]

T ∈R3 and wi,d(t)∈R3 represent
the position, velocity and environmental disturbance, respec-
tively. Additionally, ui(t) ∈ R3 represents the control input
vector. For the convenience, pi(t), vi(t), wi,d(t), ui(t) and
f i(pi,vi, t) are abbreviated as pi, vi, wi,d, ui and f i(·).

Virtual leaders move along parameterized paths pr,j(θj) ∈
R3 with j = M + 1, ..., N , where θj ∈ R is the path variable
for the jth virtual leader.

In this article, we design a distributed path maneuvering
method of multi-UAV swarms, with primary objectives being
as follows. 1) Geometric objective: Drive the position pi of the
ith UAV converges to a convex hull as ‖pi−Co(pr,j(θj))‖ ≤
ιg with ιg ∈ R+ being a residual error. 2) Dynamic objective:
Drive all path variables synchronization as

∑N
l=M+1 aj,l(θj−

θl) + aj,0(θj − θ0) = 0 where θ̇0 = vs denotes the speed
assignment and can only be accessed to a few of leaders.

Assumption 1: The derivative of pr,j(θj) is bounded and
adheres to the condition: ‖ṗr,j(θj)‖ ≤ p̄r ∈ R+.

Assumption 2: There is at least one virtual leader which has
a path leading to each follower.

Remark 1: Assumption 1 ensures that the desired path
is smooth bounded and derivable. The exact boundaries of
pr,j(θj) do not need to be known because we do not use them
in the controller. Assumption 2 is common for the design of
the distributed controller. According to Lemma 1 in [20], if
Assumption 2 holds true, it implies that within G, there exists
a spanning tree where the virtual leader serves as the root
node.
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Fig. 1. Distributed path maneuvering of the swarm with multiple UAVs and
virtual leaders.

III. MANEUVERING CONTROLLER DESIGN

A. TPP-based Kinematic Control Law

To achieve the distributed cooperation of the UAV swarm
guided by multiple parameterized paths, we define the follow-
ing distributed path maneuvering error Ei,1=[Ei,x, Ei,y, Ei,z]

T

for the ith UAV

Ei,1 =

M∑
j=1

ai,j(pi−pj)+

N∑
j=M+1

ai,j(pi−pr,j(θj)). (2)

Differentiating (2) along (1) , we have

Ėi,1 = divi−
M∑
j=1

ai,jvj−
N∑

j=M+1

ai,jp
θj
r,j(θj)θ̇j (3)
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where di =
∑N
j=1 ai,j . To enhance both transient and steady-

state performance of UAVs, the distributed path maneuvering
error is designed to meet the following TPP constraints

−Ei,k ≤ Ei,k ≤ Ei,k k = x, y, z (4)

where Ei,k and Ei,k are time-varying functions{
Ei,k=(ξi,k+sign(Eik(0)))ρi,k−ρik,∞sign(Eik(0))

Ei,k=(ξ
i,k
−sign(Eik(0)))ρi,k+ρik,∞sign(Eik(0))

(5)

with ξi,k, ξ
i,k
∈ [0, 1], ρi,k = (ρik,0 − ρik,∞)exp(−Uikt) +

ρik,∞, ρik,0 > ρik,∞ ∈ R+ and Uik ∈ R+.
Then, (4) is further put into

Ei,k =
Ei,k + Ei,k

2
Gi,k(δi,k) +

Ei,k − Ei,k
2

(6)

where Gi,k(δi,k) : (−∞,∞) → (−1, 1) represents a
strictly increasing transformation function, while δi,k
corresponds to an unconstrained transformed error equivalent
to Ei,k. In this context, the chosen transformation
function Gi,k(δi,k) is expressed as Gi,k(δi,k) =
(exp(δi,k)−exp(−δi,k))/(exp(δi,k)+exp(−δi,k)). Through
the inverse function of Gi,k(δi,k), the transformed error δi,k
can be obtained as follows

δi,k = G−inv
i,k (Ei,k, Ei,k, Ei,k) =

1

2
ln

1 +Gi,k
1−Gi,k

(7)

where Gi,k= (2Ei,k − Ei,k + Ei,k)/(Ei,k + Ei,k). The time
derivative of δi,k is provided as follows

δ̇i,k=
∂δi,k
∂Gi,k

(
∂Gi,k
∂Ei,k

Ėi,k+
∂Gi,k

∂Ei,k
Ėi,k+

∂Gi,k
∂Ei,k

Ėi,k

)
, (8)

where ∂δi,k/∂Gi,k=1/(1−G2
i,k), ∂Gi,k/∂Ei,k= 2/(Ei,k+Ei,k),

∂Gi,k/∂Ei,k =−2(Ei,k + Ei,k)/(Ei,k+Ei,k)2,∂Gi,k/∂Ei,k=

2(Ei,k−Ei,k)/(Ei,k+Ei,k)2.
Define δi = [δi,x, δi,y, δi,z]

T, Ei,1= [Ei,x, Ei,y, Ei,z]
T, and

Ei,1= [Ei,x, Ei,y, Ei,z]
T. Then, (8) can be transformed into

the following form

δ̇i=HEi,1
Ėi,1+HEi,1

Ėi,1+HEi,1
Ėi,1 (9)

where HEi,1
= diag{HEi,k

} ∈ R3×3 with HEi,k
=

(∂δi,k/∂Gi,k) × (∂Gi,k/∂Ei,k); HEi,1
= diag{HEi,k

}∈R3×3

with HEi,k
= (∂δi,k/∂Gi,k) × (∂Gi,k/∂Ei,k); HEi,1

=

diag{HEi,k
} ∈ R3×3 with HEi,k

= (∂δi,k/∂Gi,k) ×
(∂Gi,k/∂Ei,k).

Substituting (3) into (9) yields

δ̇i=HEi,1

(
divi−

M∑
j=1

ai,jvj−
N∑

j=M+1

ai,jp
θj
r,j(θj)θ̇j

)
+HEi,1

Ėi,1+HEi,1
Ėi,1.

(10)

Define ṽj = v̂j−vj . To stabilize error dynamics (10), we
construct a TPP-based kinematic control law αi as follows

αi=
1

di

(
−H−1Ei,1

(Ki,1δi +HEi,1
Ėi,1 +HEi,1

Ėi,1)

+

M∑
j=1

ai,j v̂j+
N∑

j=M+1

ai,jp
θj
r,j(θj)θ̇j

) (11)

where Ki,1∈R3×3 is a positive definite control gain matrix.
Substituting (11) into (10), δ̇i is transformed into the

following form: δ̇i =HEi,1

∑M
j=1 ai,j ṽj −Ki,1δi.

B. Path update law

Unlike trajectory tracking, path maneuvering involves an
additional control degree of freedom. Hence, a feedback law
is introduced for each path variable to achieve the update and
synchronization among multiple virtual leaders.

At first, the dynamics of the jth path variable is defined as
θ̈j = ωj . A distributed parameter error is designed as zj =∑N
j=M+1 aj,l(θ̇j − θ̇l) + aj,0(θ̇j − vs).
Then, a path update law can be designed with the ability to

reduce the control effort as follows [8]

ωj=−
(ckdzj+E

T
i,1Ei,1(ηp

θj
r,j

T
(θj)Ei,1))

c+||pθjr,j(θj)||2E
T
i,1Ei,1

(12)

where kd ∈ R+ is a gain, and c ∈ R+ and η ∈ R+ are two
tuning parameters.

Remark 2: In order to ensure synchronization among the
virtual leaders, the path update law ωj , as a to-be designed
tuning term, is designed to fulfill the dynamic objective.

C. DNP-based Kinetic Control Law

Define a velocity tracking error at the kinetic level: Ei,2 =
vi−αi. And the dynamics of Ei,2 can be obtained along (1)
as: Ėi,2 = ui + f i(·) − α̇i. Then, an ideal kinetic control
law ui is proposed as: ui = −Ki,2Ei,2− f i(·) + α̇i. Where
Ki,2 ∈ R3×3 is a positive definite control gain matrix. Some
adaptive approximators can be introduced to identify f i(·).
We can use the following neural network

f i(·) = WT
i ζi(χi) + εi(χi) (13)

where W ∈ Rp×3 represents the optional weight vector
with p being the number of neurons, ζi(χi) ∈ Rp is a
known smooth activation function, χi = [ET

i,2(t),ET
i,2(t −

td),u
T
i (t), α̇T

i (t)]T∈ R12 denotes the input vector, and εi ∈
R3 denotes an time-varying approximation error satisfying
‖εi(χi)‖≤ε∗i with ε∗i ∈R+.

An actual kinetic control law ui is proposed as follows

ui=−Ki,2Ei,2−Ŵ
T

i ζi(χi)+α̇i. (14)

In the existing path maneuvering methods [10], [17], [18],
the neural predictors are utilized to tune the weights of neural
network. These neural predictors rely on the local learning
strategy. To further enhance the ability of the neural predictor
[19], we design the following DNP law by using a distributed
learning strategy [21]{

˙̂vi=Ŵ
T
i ζi(χi)+ui−(Ki,2+κi)ṽi

˙̂
Wi=Γi(−ζi(χi)ṽTi−σiŴi)−KWi

∑M
j=1ai,j(Ŵi−Ŵj)

(15)

where Γi,KWi∈ R+ are adaptation gains, κi ∈ R3×3 is an
additional positive definite tuning parameter matrix to shape
the transient learning behavior of neural network, and σi ∈
(0, 1) is a modification factor.
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IV. MAIN RESULT

Recall the error dynamics of the resulting distributed path
maneuvering closed-loop system as follows:
δ̇i=HEi,1

∑M
j=1 ai,j ṽj−Ki,1δi

˙̂
Ei,2 = −Ki,2Êi,2 −κiṽi
˙̃vi=−(Ki,2+κi)ṽi+ŴT

i ζi(χi)−εi
˙̃Wi=Γi(−ζi(χi)ṽTi−σiŴi)−KWi

∑M
j=1ai,j(Ŵi−Ŵj).

(16)

The main result can be summarized as a theorem as below.
Theorem 1: Under Assumptions 1 & 2, when the distribut-

ed path maneuvering controller is chosen as the transformed
error (7), the kinematic control law (11), the path update
law (12), the kinetic control law (14), and the DNP (15), all
error signals within the total closed-loop system are uniformly
ultimately bounded (UUB), and practical distributed path
maneuvering of the multi-UAV swarm can be achieved.

Proof: Define a Lyapunov function as follows

V =
1

2

∑M

i=1

(
δTi δi+Ê

T

i,2Êi,2 + ṽTi ṽi+W̃
T

i Γ−1i W̃ i

)
.

By taking the time derivatives of V using (16), we obtain
the following expression

V̇ =
∑M

i=1

(
δTi δ̇i+Ê

T

i,2
˙̂
Ei,2 + ṽTi ˙̃vi+W̃

T

i Γ−1i
˙̃W i

)
≤
∑M

i=1

(
− (Ki,2 + κi)ṽ

T
i ṽi−σiW̃

T

i Ŵ i−ṽTi εi (17)

−Ki,1δ
T
i δi−Ki,2Ê

T

i,2Êi,2−ÊT
i,2κiṽi+δ

T
i HEi,1

M∑
j=1

ai,j ṽj
)

By employing Young’s inequality, the subsequent inequali-
ties are satisfied.

−
∑M
i=1 σiW̃

T

i Ŵ i ≤−
σ

2
||W̃ ||2F +

σ

2
||W ||2F

−
∑M
i=1 ṽ

T
i εi ≤

||ṽ||2

2
+
||ε||2

2

−
∑M
i=1 Ê

T

i,2κiṽi≤
λmax(κ)

2
(||Ê2||2 + ||ṽ||2)∑M

i=1 δ
T
i HEi,1

∑M
j=1 ai,j ṽj=δTHE(A⊗ I3)ṽ

≤ λmax(HE)λmax(A)

2
(||δ||2+ ||ṽ||2)

(18)

where ṽ = [ṽT1, ṽ
T
2 , · · · , ṽ

T
M ]T, ε = [εT1 , ε

T
2 , · · · , εTM ]T,

W̃ = [W̃
T

1 , W̃
T

2 , · · · , W̃
T

M ]T, W =
[WT

1 ,W
T
2 , · · · ,W

T
M ]T, δ = [δT1 , δ

T
2 , · · · , δ

T
M ]T,

Ê2 = [Ê
T

1,2, Ê
T

2,2, · · · , Ê
T

M,2]T, K1 =
diag{K1,1,K2,1, · · · ,KM,1}, κ = diag{κ1,κ2, · · · ,κM},
HE = diag{HEi,1 ,HE2,1 , · · · ,HEM,1

}, K2 =
diag{K1,2,K2,2, · · · ,KM,2}, σ = min{σ1, σ2, · · · , σm},
and σ = max{σ1, σ2, · · · , σm}. We rewrite V̇ as follows

V̇ ≤−
(
λmin(K2)−λmax(κ)−λmax(HE)λmax(A)

2

)
||ṽ||2

− σ

2
||W̃ ||2F−

(
λmin(K1)− λmax(HE)λmax(A)

2

)
||δ||2

−
(
λmin(K2)− λmax(κ)

2

)
||Ê2||2+

σ

2
||W ||2F +||ε||2.

-50 -25 0 25 50
x(m)

-50

-25

0

25

50

y(
m

)

Virtual leaders
UAV1

UAV2
UAV3

UAV4
UAV5

UAV6

t=40s

Fig. 2. Trajectories of 6 UAVs based on TPP and DNP.

Letting

h1 = λmin(K2)−λmax(κ)−λmax(HE)λmax(A)

2
>0

h2 = λmin(K1)− λmax(HE)λmax(A)

2
>0

h3 = λmin(K2)− λmax(κ)

2
>0

$=
σ

2
||W ||2F +||ε||2,

(19)

it follows that V̇≤−hV+$ with h =min{2h1, σΓi, 2h2, 2h3}.
Consequently, we can deduce that all error signals within the
closed-loop system exhibit UUB.

Define pr = [pTr,M+1(θM+1), ...,pTr,N (θN )]T and p =

[pT1 , ...,p
T
M ]T. It follows that L1p − L2pr = δ. Accord-

ing to Lemma 2.3 in [22], we have ‖p − L−11 L2pr‖ ≤
‖δ‖/λmin(L1). Therefore, the practical distributed path ma-
neuvering is achieved.

Remark 3. Another way to improve control performance
is accelerating convergence rates. Using (2) in [23], we can
design a prescribed-time TPP strategy via modifying the
distributed path maneuvering error Ei,1. Based on the results
in [24], the proposed controller can be extended to an observer-
based prescribed-time control case.

V. SIMULATION RESULTS

In this section, we select the simulation parameters as
follows: Uik = [0.1, 0.1, 0.6]T, kd = 15, c = 5.5 × 103,
η = 5, Γi = 4.0 × 104, KWi = 0.2, κi = 198, σ =
0.0001, Ki,1 = diag{0.4, 0.4, 0.2}, Ki,2 = diag{2, 2, 2},
pr,1(θ1) = [10 sin(0.05θ1), 10 cos(0.05θ1), 0.05θ1]T, pr,2(θ2)
= [20 sin(0.05θ2 − 0.3), 20 cos(0.05θ2 − 0.3), 0.05θ2 + 0.3]T,
pr,3(θ3) = [35 sin(0.05θ3), 35 cos(0.05θ3), 0.05θ3]T, and ρ0 =
[5, 8, 3; 8, 15, 3; 8, 15, 3; 5, 30, 3; 5, 30, 3; 8, 10, 3].

Fig. 2 illustrates how the followers are able to track the
virtual leaders. Fig. 3 demonstrates the updating rate of path
parameters for the virtual leaders. Fig. 4 shows the control
inputs of 6 UAVs. Taking UAV1 of the swarm as an example,
as shown in Fig. 5, compared with PPC constraints in [13],
the proposed TPP constraints have a more tight space and the
tracking errors of the followers converge within a prescribed
tight set with minimal overshoot using TPP. Furthermore, Fig.
6 presents a comparison between DNP and neural predictors
in [19], clearly highlighting the superior performance of D-
NP. Subsequently, the enhanced performance of the proposed
method is evident from simulation results.
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Fig. 5. The comparison between TPP and PPC in [13] for UAV1.

VI. CONCLUSION

This paper tackles the problem of TPP-based distributed
path maneuvering for multi-UAV swarms in the presence of
uncertain nonlinearities and external disturbances. Firstly, in
the proposed kinematic control law, a TPP strategy is utilized
to achieve prescribed performances by driving path maneuver-
ing errors into a prescribed tight set. Secondly, a path update
law is designed to achieve path updates and synchronization
among path variables. Then, in the kinetic control law, the
DNP is developed for facilitating the identification of unknown
nonlinearities in individual UAVs through the distributed learn-
ing strategy. At last, error signals are demonstrated to be
UUB and practical distributed path maneuvering is achieved.
The simulation results demonstrate the effectiveness of the
proposed distributed path maneuvering method for multi-UAV
swarms. In upcoming researches, we intend to incorporate the
attitude of UAV into our modeling and conduct experiments
on its rigid body.
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