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ABSTRACT

This paper considers the problem of decentralized finite-time adaptive neural output-feedback quantized control for a class of

switched nonlinear large-scale delayed systems. A switched high-gain quantized state observer is therefore constructed for each

subsystem to estimate unavailable system states. Different from the traditional Lyapunov-Krasovskii functional method, multi-
ple Lyapunov-Krasovskii functions are introduced to develop the decentralized adaptive output-feedback control strategy with
neural network approximation for the switched nonlinear large-scale delayed systems. Under a category of switching signals with

persistent dwell time, all signals in the closed-loop switched system are semi-globally uniformly ultimate bounded. Meanwhile,

the tracking errors can remain in a small domain of origin in finite time. Case studies are finally used to illustrate the flexibility

and effectiveness of the proposed control approach, including the switched two continuous stirred tank reactor delayed systems.

1 | Introduction

Neural networks have drawn extensive attention over the last
decades due to their capability in universal approximation. In
particular, adaptive neural network control has become one of
the most popular tools for stability and stabilization of non-
linear systems [1-5]. Through online learning to modify the
weights, the robustness and the convergence of the nonlinear
systems can be improved by updating adaptive parameters. The
neural networks-based backstepping technique is an effective

adaptive control design strategy for nonlinear systems [6]. How-
ever, the explosion of dimensionality is often produced by repeat-
ing the differentiation of the virtual controller inputs in the
backstepping technique. To address this issue, Reference [7] pre-
sented a dynamic surface control technique. In Reference [8],
the modified dynamic surface control has been presented for
the half-car active suspension systems by the adaptive neural
controller. In Reference [6], the adaptive neural optimal control
has been presented for nonlinear multi-agent systems via the
dynamic surface control technique. In fact, due to the limitation
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of the sensor, the system states are not always available during
the operation. Besides, the aforementioned studies mostly focus
on non-switched nonlinear systems. Therefore, it is expected to
develop adaptive neural network control strategies for switched
nonlinear systems under the output-feedback framework.

Especially, switched systems have attracted much more atten-
tion in the last decades [9-15]. They contain several subsystems
and a switching signal, which can stand for lots of practical sys-
tems, such as single-link robots, chemical reactor systems, and
circuit network systems in References [16-19]. In addition, one
key issue in the stability problem of switched systems is to design
a suitable switching signal. At present, some significant design
approaches for switched systems have been reported, such as
the common Lyapunov function, dwell time, multiple Lyapunov
function, and average dwell time [12, 18, 19]. Meanwhile, it is
worth noting in Reference [20] that the persistent dwell time
switching is more general since both dwell time and average
dwell time are regarded as special switching cases. The persistent
dwell time switching strategy has been reported for the stabiliza-
tion of switched linear systems [21], switched nonlinear systems
[22], and saturated switched delay systems [23]. In the practi-
cal application of switched systems, it is inevitable to suffer from
the change of controllable variable lags (also named time delays),
owing to long transmission lines and self-physical characteristics.

Otherwise, the time delays can worsen the system performance
index and even result in the instability of control systems. In
general, the Lyapunov-Krasovskii function method and the
Lyapunov-Razumikhin method are the two significant methods
to address the stability problem of delayed systems in References
[15, 24-28]. Currently, most of the existing control strategies
under the persistent dwell time switching for the switched non-
linear delayed systems cannot be applied to the digital channel
with limited communication bandwidth since these methods are
set up in the framework of continuous-time feedback control.
Besides, to reduce the impact of some possible constraints on
information-processing devices, the quantized control strategy
has been proposed due to its capacity with a finite number of data
bits [29-32]. Naturally, this study focuses on developing the vari-
ous adaptive neural output-feedback quantized control strategies
for switched nonlinear large-scale delayed systems with data rate
constraints.

Remarkably, finite-time stability has attracted considerable atten-
tion and achieved many significant results due to its finite-time
convergence for practical control systems, such as the electro-
hydraulic servo system [33], the complex dynamical networks
[34], the pendulum system [35], and the vehicle system [36]. In
the existing results, the control purpose of the finite-time stabi-
lization for the nonlinear systems is often to design the control
strategies such that system states can stay in the small domain
of the origin in the finite time. In Reference [37], based on an
improved disturbance observer, the fixed-time consensus track-
ing strategy was proposed for multi-agent systems. The com-
mand filtering-based finite-time tracking control was developed
for switched nonlinear systems with a hysteresis input under
arbitrary switching in Reference [38]. Moreover, the nonlinear
system under finite-time stability has stronger robustness than
that with exponential stability. It hence is more capable of ensur-
ing stability when the system states are not always available

and the phenomenon of time delays occurs. However, no related
study has been reported on the adaptive neural quantized con-
trol for switched nonlinear large-scale delayed systems by using
the output-feedback control in the finite-time tracking under a
category of switching signals satisfying the persistent dwell time.

Motivated by the above discussions, this study focuses on the
decentralized finite-time neural output feedback quantized con-
trol for switched nonlinear large-scale delayed systems. The main
technical challenge arises from dealing with quantized input and
time delays for switched nonlinear large-scale delayed systems
under a suitable switching signal. These challenges are addressed
in this article, and the main contributions of this study are sum-
marized as follows:

1. The decentralized finite-time adaptive neural output-
feedback quantized tracking control scheme is flexibly
designed for the switched nonlinear large-scale delayed sys-
tems using the multiple Lyapunov-Krasovskii functions.
While the similar control problem has been addressed in
References [32, 35], these studies are confined to a class
of single-input and single-output nonswitched nonlinear
systems. Thus, they cannot be applied to switched non-
linear large-scale delayed systems due to the presence of
large-scale time delays and interconnected subsystems.

2. By the nonlinear decomposition technique, quantization
errors from input quantized signals have been addressed for
each subsystem. Different from the quantized control for
the nonswitched nonlinear systems or nondelayed systems
in References [32, 39, 40], undesired chattering is effectively
prevented for switched nonlinear large-scale delayed sys-
tems under a category of switching signals satisfying the
persistent dwell time.

3. By designing a switched high-gain quantized state observer
to estimate the unmeasured states, the proposed decentral-
ized adaptive output feedback control approach eliminates
the restrictive assumption in References [18, 25] that states
are available during the control design. Moreover, the sta-
bility of the closed-loop system is guaranteed such that the
tracking errors can remain in a small domain near the origin
in a finite time via the dynamic surface control technique.

The remainder of this study is arranged as follows. The sys-
tem description is mainly introduced in Section 2. The con-
troller scheme and stability analysis are presented in Section 3.
The effectiveness and flexibility of the proposed control strategy
are shown in Section 4. The conclusions are finally drawn in
Section 5.

2 | System Description

2.1 | Switched Nonlinear Large-Scale Delayed
Systems

Consider the following switched nonlinear large-scale delayed
systems

Xy = X1+ Lo + Ry (x2) (1a)
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Xim = Q(uio'(t)) + fimu'(t)(x) + himo‘(t)(xr) (]'b)
V=X (1c)
where I =1,...,m—1and x; = [x;;, ..., X;,]" €R™ is the sys-

tem state with x=[x],...,x ] € R™. The switched sys-
tems (1) consist of n interconnected subsystems ¥, for i =
1,...,n. Aswrtchlng signal o() is defined as o(?) : [0, 0) - M =
{1 , M} with M > 2 being the number of subsystems. Note
that dunngt € [ty t;1), one gets o(r) = k € M, where t, and ¢, ;
are the time instant. During the time interval [f,,7,,,), the k-th
subsystem is active with the switching time instant ¢, . The control
input of the k-th subsystem is described by u;, = [uyy, ..., u,]" €
R".y=[y,,...,y,]" €R"is the system output. O(-) is the quan-
tization function to be designed later. Fork € Mand/ =1, ..., m,
Sfiux() € Rand h;,(-) € R are the unknown continuous nonlin-
ear functions. For the known constants = > 0 and 7 > 0, the
delayed state x, is defined as x, =[x, ...,x] ]T € R™" with
X;p = x;(t —7(1) and x;;, = x;;(t —7;(r)) fori =1, ...,nand j =
1, ..., n,where 7,(¢) is the unknown time-varying delay satisfying
0 < 7;(t) < 7 and 7,(r) < 7 < 1. In this case, I'(#,) = x(t,) € R™"
represents the initial vector at 7, € [—7,0].

For given reference signals y,(t) (i =1, ...,n), the control
objective is constructing decentralized finite-time adaptive
output-feedback quantized controllers of subsystems for the
switched nonlinear large-scale delayed systems based on the mul-
tiple Lyapunov-Krasovskii functions such that, for any bounded
initial conditions, the following hold:

1. all the closed-loop signals are semi-globally uniformly ulti-
mate bounded under a category of switching signals with
the persistent dwell time;

2. the tracking error y, —y,. (i =1,2,...,n) converges to a
small domain around the origin in a finite time.

Assumption 1. For any k € M, the nonlinear functions
fux(-) and hy;, () can satisfy f2 (x) < Z (x )and h?% (x,) <
X l/j(x ywithl=1,...,mandi= 1 ,n, where F,;; and
H,;; are unknown non- negative smooth functlons satisfying

F,;;(0) = 0 and H,;(0) = 0, respectively.

Assumption 2. The reference signals y;.(¢) and their deriva-
tives y,. and ji,, are continuous and bounded, satisfying Q,; =
(Wi Vi 91T 2 Y2+ 92+ 32 <Y} with Y, being a positive
constant.

Remark 1. Assumption 1 is a general assumption that is
used to deal with the nonlinear time-delay terms. In fact,
for any continuous function A4, (x,,, ..., x,,;) : R™" — R, there
exist positive smooth functions H,,(x;,), ..., H;,(x,,) such
that |h;,(x,)| < Zj H,;(x;,), that is, 12, (x,) 5 Z,» L ’/j(xﬁ)
which can be commonly found such as in References [18, 41].
Assumption 2 is a standard assumption widely employed in the
study of adaptive tracking control, both for nonswitched nonlin-
ear systems [5, 40] and for switched nonlinear systems [39, 42].

Lemma 1. (Reference [43]). Consider a smooth
positive-definite function V(x) in a set Q, € R" for the non-
linear system x = f(x,u). If positive constant c exists, then

«——— p-th stage

T,<T

1t t

p+1

tsp+1 tsy+2 e ts

[ ] 7-portion

FIGURE1 | Schematic of the persistent dwell time switching.

p+1

I T -portion

V(x) < —cV?¥(x),t >0, where 0<w <1, and the sys-
tem x = f(x,u) is semi-global practically finite-time stable.
Besides, V(x) =0 is arrived at the finite time T, satisfying
T, S V7% (x)/le(1 — w')], where V(x,) is the initial value of
V(x).

2.2 | Persistent Dwell Time Switching

Definition 1. (Reference [20]). Consider the switching
sequence produced by a switching signal (7). 7, can be denoted
as the persistent dwell time when an infinite number of disjoint
intervals of length no shorter than a positive constant 7, exists.
Meanwhile, a persistence period T separates the successive inter-
vals from the above disjoint intervals.

In the persistent dwell time switching, the time interval is divided
into several stages shown in Figure 1. Each stage consists of
the period of persistence 7-portion and the running time of the
subsystem z-portion. Denote the switching interval (tsp, tspﬂ) as
the p-th stage of the PDT switching with a positive integer p.
Meanwhile, in the p-th stages, t,, Tepresents the initial switch-
ing moment, while Iy 41 represents the next switching moment
after 7, . Based on N (ts +1-1; ) as the number of switches dur-
ing (¢, I+1, 5,,,) in the T- portlon the running time 7, meets the
followmg cond1t1on

Nty 1ty

T,= Z T(ISp”’tspHH) <T )

]
—

where T, 4ir s yiv1) = Ly pig1 = L i 1D the T-portion, let the
switching frequency of the p-th stage be f =N 015 ,) /T I3
Then, according to Reference [21], the switching frequency f

holds that f, < f, where f stands for a known positive param-
eter. For any interval (7,,1,), the number of switchings N (t,,1,)
holds that

1, —t a
N(t,1,) < (ﬁﬂ)(rfﬂ) ©)

d

2.3 | Neural Networks Approximation
The radial basis function-based neural network is considered as
follows: _

FNnX) =WTS(X) eR 4)

where the weight vector W € R’ contains # nodes whose
number is greater than one, and its basic function vector S(X) €
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R’ contains the input vector X. Meanwhile, the W*T.S(X)
satisfies _
FX) =W TS(X) +8(X) (5)

where X =[x, ...,x,]T €R" and §(X) is the error of approx-
imation satisfying |6(X)| < 6* with any given positive constant
6*. In addition, W* demonstrates an ideal weight vector. Con-
sider S(X) = [s7(X), ...,5,(X)]T € R” with the Gaussian func-
tions 5,(X) as follows fori =1, ..., 7,

~(x-9)"(x —19,.)]

5i(X) = exp [ >

(6)

where 1is the widthand 9, = [9,, ..., 9,,]" is the center. For con-
venience, f(X) is defined as f(X) = W*T.S + § with

W* = arg Vrvneiu%{)s(nég 700 - fNN(X)|} ™

3 | Main Results

By employing the multiple Lyapunov-Krasovskii functions, for
the switched system (1), this section will develop a decentral-
ized neural output-feedback quantized adaptive control scheme
in the constructive design via the backstepping method with the
dynamic surface control technique. The analysis of stability will
be shown in the resulting closed-loop switched system under the
persistent dwell time in finite time.

3.1 | Hysteresis Quantizer Design

The input hysteresis quantizer is considered as follows:

-

Ui .
uzsgn(u;,), o < [ty | < ug, iy <0,

in>
U o .
or uz; < |uik| < ;,llik > 0;

UL+ p)sgniuy), ug < |uy| <

Uy .
u, <0
1-p,7 ik

O(u;) =4 or

1

Uy uz+p) . .
0 <uyl < 1_—’7’,M;k > 0; (®

Ui min
1+p;

0,0 < uy,| < Sy <0,

Ui min .
or — < |u,|<u u, > 0;
145, | lk| —= ik ’

i,min?

O(u;, (7)), otherwise

where u,, is the notation of the system input, uz; = 7' ~"u; i
(n=1,2,...)and p; =(1 = x))/(1 + ;) with u; ,;, >0 and 0 <
Z; < 1. The quantization function Q(u;,) belongs to the set Q, =
{0, tu, +uz(1+p;),n=1,2,...,}. Here, the constant u; .,
stands for the range of the dead zone for O(u;, ), and the constant
x; represents the measure of quantization density. The schematic

of the hysteresis quantizer is depicted in Figure 2.

Since the quantization function Q(u;;) from the system input of
each subsystem is piecewise continuous, the design of the suit-
able controllers becomes complex in the backstepping technique.
Thus, the following lemma introduces a nonlinear decomposi-
tion technique for the quantization function.

Quyl e Uy <0
Uy, >0
14+ p;
L JS S
T 1=a
Uy -
/
0 -----u-l Uy Uy 1+qu Uy Uz
1+p 1—ps 1—p, " 1—p,

FIGURE 2 | Schematic of the hysteresis quantizer.

Lemma 2. (Reference [30]).
can be decomposed as follows:

The hysteretic quantizer Q(u;;,)

Ouy) = GluyJuy () + D(1) ©)
where G(u;,) and D(t) satisfy

1-p < Guy) <1+p, [DO)| <u (10)

i,min

3.2 | Switched High-Gain Quantized State
Observer Design

To estimate the unavailable states, a switched high-gain quan-
tized state observer is considered as

Xy =X+ Lioey (i — Xi1) (11a)

');E[m = Qo) + Lipory(V; — X1) (11b)

where I =1,...,m—1, o(t) is the same switching signal as
described in the switched system (1), and %, is the estimate
of the system state x;, for /=1,2,...,m. L, denotes pos-
itive constants to be designed such that the matrix A, is
Hurwitz, where A, = A-L,C with A=]0,4,] €R™",
Ay =1[I,,_,,0]" € R™(m=D), Ly =1Ly - L )" €R™,
C=[1,0,...,0] € R™" and I, , € R DX"D jg an identity
matrix fork e Mand/=1,2,...,m.

In other words, for definite symmetric matrices B;, > 0, the sym-
metric definite matrix P, > 0 exists and satisfies

Al P+ PiAy = =By, (12)
Denote the state vector of the observer as £ = [fclT, ..

R"™ with %, = [%;1, .
state observer be

LxTe
. %, 1T fori =1, ...,n. Let the error of the

g =€ ... €] =X, —% ER" (13)

To proceed with, combining (1) with (11), one gets

& = Ay + [ (X) + hy(x,) (14)
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where keM, [, =[fe - Sfim) €R" and k=
[Aiggs -+ s By ]T € R™. As a matter of convenience, the unknown
ideal values are expressed as

0 =

= max({|| k € M} (15)

il zlk”

where 1 =0,1, ...,m, W7 _stands for the ideal constant weight
vector. Meanwhile, 8, is the estimation error satisfying 8,, = 07 —
0., and 9, is the estimation of 0.

For the observer error system (14), let the Lyapunov function can-
didate be
Viok = 0€; Pkel,l—l ...n keM (16)

where g; is a positive parameter. By using (12) and (14), one gets
V o satisfied by

Vik = Zgig;rpik[fik(x) + hy(x)] + 0;€ T(A,k e+ P Aude;
17)

In what follows, the inequalities are determined by the definition
of Young’s inequality

2016, I)lkflk(x) < oir loeﬁ‘r“8 ”2

% b ZZ F2(x)

(18)

||P,k|| 22H,1,<x,,>

19)

2015 I)Ikhlk(‘x )< o;r 1OeﬁT”£ ”2

where f and r,, are the positive parameters. Suppose that the
unknown continuous function is f,,,(X,,). Furthermore, com-
bining (5) and (15) yields

FionXio) S MWL S (Xl + [8,00] < 65 +85  (20)

Then, substituting (12) and (18-20) into (17), one gets

mG < _OI(A(Bik) - 2";0‘?!{7)||5;||2 + O — 7[0/((X0)

ZZ( F2.(xe) + HZ (x;,))

where A(B;; ) represents the smallest eigenvalue of the matrix B;,
and ©,, is an unknown constant with ©,,, = 67 + 5.

(21)

ik

Remark 2. A quantizer is referred to as a sector-bounded
quantizer if the quantization error satisfies the sector-bounded
condition. It is noted in Reference [44] that, several typical
quantizers, such as the logarithmic quantizer and the hys-
teresis quantizer, fall within the framework of sector-bounded
quantizers. Compared to the logarithmic quantizer, the hys-
teresis quantizer offers a broader range of applications. It can
maintain its output value for a period before changing, effec-
tively avoiding the chattering phenomenon. This characteris-
tic is particularly advantageous in switched systems requiring
stable and consistent signal processing for the state observer
design.

3.3 | Adaptive Output-Feedback Quantized
Controllers Design

The common changes of the coordinate for each switched sub-
system are designed as follows:

Zi1 = Xip ~ Yir (22a)
z, =% — & (22b)
My =& —ay 1, 1=2,....m (22¢)

where z;, denotes the error surface for/ =1, ...,m. a;;,_, and &,
are the input and output for a first-order filter g€, + &, = a;,_,
with a time constant g;, > Ofor/ = 2, ..., m, respectively. 5, is the
output error for the first-order filter with #;, = 0. From (1), (11),
and (13), the dynamics of (22) are given by

2p =X+ e+ [r(X) + hiy (X)) =y, (23a)
Zy =X+ Ly — %) — & (23b)

where %; .., = O(uy) fork e Mand/ = 2,3, ...
the definition of #,, in (22c), one gets

,m. According to

R : n
N =&y — g = _q_ll +®;() (24)
il

where &,(0) = «,;;_;(0) and ®;(-) is a continuous function with
respect to the vector X, to be determined later. The detailed
design process of the control scheme is shown in the following
steps.

Initial Step: Construct the following Lyapunov function as

Viik = Viox +1z +—6

1 2 il 2{ i1’ keM (25)

where ¢;; is a positive constant. To proceed with, based on (1),
(13), (22-25), one gets

Vik = Zalzi + i+ + & + fi () + hi(x,) = .1

. 1 ~ 4 (26)
+Viok — f_eilail
il
By utilizing Young’s inequality, one has
Z1€n < —zl.z1 + 0,710¢"" |I€; 117 27)
i"i0

Zj1 [k (X) < ,1 + —Z llj(x ) (28)

rin j=

pr —pr I

rpe 2 e

Znhii () < <5z + 71/21 HE (50 29)

where r,, is a positive parameter. Then, f,,(X,)=[e"#/
(do,ryy) +1r1e"1z;; — ¥, is denoted as the uncertain continuous
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function with X;; = [x;;,;,¥;,]7- Based on (5-7), it can be
approximated by a neural network satisfying

FiuiXi) = Wil S + 8y (30)
where 6, is the approximation error [, | < &, and 6, is a pos-
itive constant. Based on (15) and (30), one gets

zn S (X)) = Z:l W,T;ISA + Z11511k
1 (€29)

2

i17i1

<—1z H*STS,1+ sa +
a;

=22+ L2
2 il

where a,; is a positive parameter. Meanwhile, the finite-time
virtual controller input «,; and the adaptive law 4,, are deter-
mined as

cinlzi[“'sgn(z;;)

(32)

1 T 1
Ay = — :19:15 N Ezil —CnZi1 —
il

‘n .
0, = ?Zi‘g;sil = 7nbn (33)

i1
where ¢;;, ¢;;, and y;; are some positive parameters.

Substituting (27-33) into (26) results in

. ; Y,
Vi £ —0;(A(By) — 3,.[0eﬂ )”51'”2 + #911911 + ZjMin

il

2 = +1 "
- Cilzil =Calza " + 22 + Oy — i (Xo)

l ZZ< B+ iy Y

+—Z( F2 (x) + H} (x;,))

Fix j=
where ©,), = 0, + a2 /2+65.2/2.

Inductive Step (2 <! < m —1): The Lyapunov function can be
constructed by

1
Vik =Vicie + Sz + =0+ 5m (35

where 7, is a positive constant. Furthermore, it is deduced that

Vik=zylZjpp + Mg + oy + Ligen =Sl + Vi1
1 i é ’7,2, o (36)
Z, i%il 0 D (nyy
By utilizing Young’s inequality, one gets
e 5, pr 2
zyLyken < 4_()_rLi1kZ,»1 +0,10¢"" l&; | 37)
[

where r; is a positive parameter. Similar to the ini-

tial step, the wuncertain functions are considered
as funXy)=e P12 R ,1/(40, rio) + 2z, with X, =
(X115 Virs Virs Firs 011 ...,013, LR ..‘,fci,]T. Based on (5-7),

the uncertain functions £, (X,,) can also be approximated by a
neural network satisfying

FurXi) = Wil S+ 6 (38)
where the error of approximation §;, is satisfied by |5,,| < &},
with a positive parameter §7. Based on Young’s inequality, (15),
and (38), one has

- _ T
zy [ (Xy) = 2y Wiy Sy + Zzl5l1k

1o, (39)

* QT 1 *2
SZ ZZIIHUSI[S + a +§ 55”

where g, is the positive designed parameter. Meanwhile, the
finite-time virtual controller input a;, and the adaptive laws 0,
can be considered as

1 N 1 - :
ay = __zzileilSi-ll—Sil - EZU —¢yzy — cylzy|sgn(zy) + &,
il
' (40)
b, = Lu 25TS, —y,0
=5, 2 52 ZuPu i ~ Yali (41)

where ¢;;, ¢;;, and y;; are positive parameters. Substituting (38-41)
into (36) yields

VI[k ol[j’(Blk) - (2 + l)rlOeﬁT]lle ”2 + 22, J+1
kllzZZ( F20e) + HE (x,,))

i T}Z( '11(x )+ llj(x.l'[)) FionXo) )

L/
U5 A 2 = w+1
+ E <ﬁ.0’79’7 CijZi; cij|zij| )

j=1 ij

-1 1 ,12
2

DTINEDY <q_ - <I>;,-(-)t1,,->
i

=1 j=2

0 ’"
+ 0, + —

where ©,, =©,,_,, +a./2+67/2.
Step m: Let the Lyapunov function candidate be

1 ~2 1 2
SR S L
22,, 2 lim

im i

1
Vink = Viperic + 52 (43)

where 7, is a positive constant. Also, it is deduced that

Vimk = Ziml Gy uy + DO + Ly = E 1+ V 1y

R 2 (44)
- Letmatm - <nl_m - q)im(')nim>
f! q

im

Utilizing Young’s inequality induces

Z; lekell +01 lOe ”Ei”2 (45)

lmk im

z,, D(t) < —z + u? (46)

ik,min
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where r,, is a positive parameter and u? . is the
. ik,min .

same as the definition of ¢;,;,. To proceed with,

fimk(Xim) = e_pTL,ka lm/(4ox 10) + Zl m—1 with Xim =

(X115 Virs Vips Fips Ois - .- ,H,M_l, K> -os%;,]T. Based on (5-7),
the neural network approximation is given by

X)) =W TS, +6

imk=im imk (47)
where §,,, is the error of approximation and a positive constant
&7 is satisfied by |6,,,| < &% . By using (15), (47), and Young’s
inequality, one has

ZinS ik Xim) = Zin WS, + 2,6

imk~im imYimk
1 g7 1 1 , (48)
S 2 lmel*m lmSlm + zalm + 4z1m + 5*
i
where q,, is a positive parameter. Then, the finite-time actual
controller input u;, and the adaptive laws @, are constructed as

L STS. +1z +c

U = _Tpi 2(1 lmglm im im ) imk Zim (49)
+Eim|zim|ngn(zim) - étm]
A ¢ N
= —2-20 S, Sin = Vinbim (50)

im 2 2 im~im~im

where ¢;,;., ¢, and ¥, are positive parameters. Then, based on
Lemma 2, (44-50) result in

where A(P, ) (A(Py)) refers to the largest (smallest) eigen-
value of the matrix P, respectively. Obviously, the inequali-
ties ¢;[A(B;;) —B+mre’1>0,i=1,...,n,j=1,....m k €
M holds by suitably selecting By, ¢;, r;, and . Then, u > 0 and
v > 1 are the two known parameters.

Theorem 1. Consider the switched nonlinear large-scale
delayed system (1) satisfying Assumptions 1 and 2. If the decen-
tralized adaptive output feedback quantized controllers (49) are
designed with the switched state observer (11), the finite-time
virtual controllers (32), (40), and the adaptive laws (33), (41), (50),
then the following results hold:

1. all signals of the closed-loop system are semi-globally uni-
formly ultimate bounded under a category of switching sig-
nals with the persistent dwell time satisfying (v, + T)/(T f +
1) > (Inv)/u;

2. the tracking error y; — y;. (i =1, ..., n) converges to a small

domain near the origin in finite time T,.

Proof.  The proof consists of two parts to analyze the bounded-
ness of all signals in the closed-loop system.

1. Based on (16), (25), (35), and (43), the following multiple
Lyapunov-Krasovskii functions are designed as

ViX) = Y Vi (X) + Vi), k€M (54)

—xT T xv — [T 7] ]
where X = [X|, ... X, 1, X, =&, 20> -+ s Zim» 0115+« +» 0o 15

/ - I & )
Vime < ol[/l(B,k) @+ myrige1lle;ll” + 6y, T, and V,LK = iz;’ 1 tt—‘r (I)eﬁsv-(x-(s))ds with v;(x;) =
4PLIIP (x )+ (x ). In addition, it induces
Pyl ZZ( Fp(e)+ Hj(x;0) I 20 Hi iy
n
Vi< 24 - aldB) = @+ myrge”lle]* +©,,
+ _2( tlj(x )+ Ilj(xj‘l')) f[Ok(XO) ¢ ;{ = ’ ’
il j= (51)
m 01 2
}/[j.. A 2 - +1 +_”Pk” l(x)
+ (701‘1‘9:’/ — ¢z = Ciylzi 1T I 121,2 W
j=1 ij
-l L + —2 F2(x)+ 2 =)~ faXo) (55)
ST ARED N Ebe L N0 -
Jj=1 AN m y
. 2 _ = w+1
+ —0..0.. —c;.z7. —¢;:|z;:] >
where ¢, = max{c,,,, kEM} and ©,, =0,, +u .+ Z{ (fij vy e
a /2 + 52 m-1 n o2
ij
+Zzij'7i,j+1 - Z <_ - q)ij(')”U')}
j=1 j=2 4ij
3.4 | Stability Analysis _
Then, the function f,,,(X,), k € M can be determined as
First of all, for notational convenience, define
__ X)) = X
) Oi[i(Bik) _ (2 + m)rioeﬂr] f:Ok( 0) ik ,[j( )
#=mip A(B) 20y =Ly b, R
. (52) S F2(x)+ 1_vj(x)
2 — 27‘ L -7
- —<I>l-j -1Li=1,...,n, j=1, ,m}
9 Furthermore, the terms 2 0110,1, z;iM; ;41 and @;;()n;; from (55)
7P satisfy
Py . Vi Vi Vij s
» = max k,peM, i=1,....n (53) ig b i 9*2 iy
{ AB,)’ } 7,000 =500 = 27 7
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1 1
ZijMijr1 < 22 +2’712,+1 (58)
[,y | < 503 o, + (59)
Ml = 5950 T 5

where d,; = 6
itive constants Y, > 0 and ¥/, since the sets Q,, = { Wirs Virs y,17
V424572 <Y} and Qp, = {V, (X)) + Vi g <V} for i=
1, ..., n, are compact sets, Q; X Q, is also a compact set. Thus,
|®;;(-)| has an upper bound 5,-/- on the compact set Qy,; X Q,
because of a continuous function @;;(-). According to (55-59),
one has

— 0,;. Inspired by References [27, 42], for any pos-

Vi< Y=ol ABy) — @+ mrge™llle |1

i=1

m S m
1 D, 1 _
—BVirk — Z <_ - TJ - E) ’1,-2j - Zcijlzij|w+l (60)

Jj=1

where  ©; =3 (0, + X702 /2C)) +(m=1)/2.  In
terms of (52), it is clear that

V,<-uV,+0 (61)

where © = 7" | ©,. It is observed that if the function x(-) € K,
exists, the following inequality holds:

V(X (1) 2 Zl [o,e Pue; + Z <—z + —51.2] + %"5)]

2 k(IX®ID
(62)
Moreover, it can be verified from (54) that
e ft - 0 P(t+s)
Viig < = / e v;(x;(t+ 5))d(t + 5)
j=1Y "1, (1)
(63)

n

e Pt

IN

1% sup ; (t)eﬂ(’”)vj(xj(z +5))
=1-7; (1)<s<0

Meanwhile, concerned with a function x(-) € K, one gets
V(X ()

< sup Z:[ole(t+s)T €T+ 5)

-7 (1)<s<0

+Z <—z (t+s)+70 (t+S)+ 37 (t+3)> LK]

<k( sup [| X+ 9))
—7<5<0

(64)

Hence, based on (62) and (64), the two functions, «(-) and k() €
K, satisfy

(X < V(X (@) < k( sup 1X(+ 91D (65)

—7<s<

According to the definition (53), it induces
V(X (@) <oV (X(1), Yk, peM (66)

Let the initial time be?, . In the persistence period T-portion from

Figure 1, foranys € [t lyn ), it yields from (60) and (66) that

Spr1—17

Voo X@) <&My (X, 0)

'
+ O =g
Lspp1-1

—ut=t, 1) -
< ve P+l Vg(t;p+171)(X(pr+l_1))

t
+ Oc M) dw < - - -

Lspp1-1

(67)

< PN Dty

)()((ts1 ))

1
+ / Qe =g + - - -
1

spa1-1

’l
+DN(’»\‘L”)/ l+1@e”‘(’f“’)dw
t

51

Inspired by [21], for any & € (zSeri, I, 4is1 ), one gets

N(t, o0 = N(@,1) (68)
which implies that

V,o(X(0) < oM a0 0y (X, )

! (69)
+ / @DN(w,t)efﬂ(Ifw)dw

151

Based on (3), the first term in (69) can be further obtained as fol-
lows:

Nty D) p=H(t= tjl)V )(X(t )
(70)
£ L np— )=ty )
< UTf+1 ( g +T ) (In )(X(t51 ))
To proceed with, the second term in (69) can be shown that
t
/ @vN(w,t)e—ﬂ(l—w)dw
tAl
P
< @UTf+l/ D%O_w)e—”(t_w)dw (71)
le
@l)TfA"'1 e( % In v—y)(t—tsl) _ @l)T/A"'1
! _ T+l -
7,+T ln v H 7, +T ln v H

By utilizing (z, + T)/(T f + 1) > (Inv)/ u, it yields from (70) and
(71) thatas t - oo,

(1=t5))

1
mww<W“@”””“amwm»

4 @uT/+1 e(% lnu—y)(t—txl) _ @uT/+1
Tf+1 _ T/+1 -
T, +T ln v H T,+T ln v H
(72)
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Together with (70) and (71), one gets

Ino—p |(t—t, )
Voo(X @) < o/ (’W Jo-s, Vou, ) (X (@)
4 @uT/+1 e(ff*r‘ Ino— ;4)(1 0 @uT/+

Tf+1 _ T/+1 -

T, +T Ino H T, +T Inv H
(73)

which implies for any ¢ > 0,
3 Ino—p |(r—t, )_
c(IX@I) < o' *le (55 o) k(. sup || X(w)ID)
—rSa)_tjl
Qv /+ e(% Ino—p)(t-1,,) v/

Tf+1 _ T/+1 —

T+T Inv H T+T Inv H
(74)

Therefore, for any bounded initial values, one can obtain by
(73) that if the persistent dwell time satisfies (z, + T') /(T F+1>
(Inv)/u, then g, z;, 0, and n;; are bounded fori =1, ..., nand
I =1, ...,m. According to the definition of §;,, one can know that
é,-, is bounded for i =1, ...,n and I =1, ..., m. Then, through
(32), (40), and (49), one gets a; and u,, are bounded for i =
1,...,n,1=1,...,m—1,and k € M. To proceed with (22c), one
has¢; isboundedfori =1, ...,nand/ =2, ..., m. Next, based on
(22b), %, isbounded fori =1, ...,nand / = 2, ..., m. According
to (13) and (22a), it yields that x;; is also bounded fori =1, ...,n
and/ =1, ..., m. Hence, for k € M, all signals in the closed-loop
system are bounded under a category of switching signals with
the persistent dwell time satisfying (z, + T') /(T 7 +1)>(nv) /1.

2. Let the Lyapunov function be V, = ZLIZ;":I
follows, based on (60), one has

zl.zj /2. In what

V., <=V +Y (75)
where ¢ =min{c;;, i=1,....n, I =1, m}, w =w+1)/2,
and Y= Z [mQ, 1OeﬁT”£ ”2 + e_ﬂrzj 1 ll](x )/(zrll) +

e‘ﬂfz;’ y ,1,(x/r)/(2":1) + Z 1(a ]2+ 6*2/2) + ijzni,j/z]'
Besides, based on (75), a constant ¢, exists and satisfies ¢, € (0,1]
such that
V., <—csV” = (L =c)sV +Y (76)
To proceed with, if V*' > Y /[(1 - ¢,)s], then one gets
V., <=V (77)

According to Lemma 1, the trajectory of z;; can approach V' >

Y/[(1 — ¢y)¢] in the finite time fori =1, ...,nand /I =1, ....m
that is,
w Y
hmz IS (V < —) (78)
coaco (1 — Co)g

where ¢/ € (0,1). Then, the finite time T, from (78) is deter-

mined as
Vl—wl(o)
T,< —— (79)
0(1 —wr)

where V,(0) is the initial value of V. Furthermore, recalling
Lemma 1, it can be concluded that the signal z;; is semi-global
practically finite-time stable for i=1,...,n and I =1, ...,m

Thus, the tracking error y,(t) — v, (f) with i =1, ...,n can stay
within a small domain of origin in the finite time. The proof has
been completed. m]

Remark 3. A detailed guideline from Steps 1-5 is pro-
vided to elucidate the design of parameters for the proposed
output-feedback control strategy.

1. Select the proper parameters L, , such that the matrices A;,
are Hurwitzfori=1, ...,n,l =1, ...,m,and k € M.

2. Specify the symmetric matrices B;, > 0, then the symmetric
matrices P, > 0 can be calculated by solving (12).

3. Decide the number of neural network nodes and Gaussian
functions, then determine neural networks (5).

4. Select suitable controller design parameters a;;, ¢;;, Cip> Cits
w, ¢y, p,and g, fori=1,...,n,1=1,...,m,and k € M,
and then determine the controllers (32), (40), and (49) with
the adaptive laws (33), (41), and (50).

5. Determine the designed parameters of persistent dwell time
with 4 > 01in (52) and v > 1 in (53).

4 | Case Studies

This section provides case studies to show the effectiveness and
flexibility of the proposed decentralized neural output feedback
quantized control strategy on the switched nonlinear large-scale
delayed system.

Example: Consider two continuous stirred tank reactor systems
with recycling depicted in Figure 3. Through two different source
streams connected to a supervisor, two exothermic and irre-
versible reactions occur in two reactors. In both reactors, the
cooling jackets are filled with cooled water at flow rates F;
and Fj,, temperatures 7;; and T},, respectively. Define V;; =
Vo=V, Vi=V,=V, FOk_FZk_Fk, and F,, = F, + Fyg, for
k =1, 2. According to the mass and energy balances [45], the two

Supervisor

F()l ) TOl ) CAOI

PR

FRkaT27CA2

Tank1|||Tank2

T

FIGURE 3 | Schematic of two continuous stirred tank reactor
systems.

F1k7T17CA1

F727T7'20
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continuous stirred tank reactor systems with the two switched
subsystems are described as follows:

. Fox Fyy Fre ke
Cy= % —Caor — 7CA1+7C —£,C e Bl (80a)

. F F — _ B
Cra= VIkCAl = 2ECyy = ECppe BT (80Db)
T, = &Tok &Tl + &Tz — £ KK Ce R:l';'l
vV 14 14 Pk Cik (80c)
U, A, ( ) —T~1)
PV /
U,A £.A B
T,= 221 -T) - (1, -T),) - Site o Lo Fh
v PV kCrk
(80d)
: Fj U A
T =-2(Tyy—Ty) + —— (T, - T, 80e
Jjl I/j ( j10 jl) pjkcjkl/j( 1 /1) ( )
. Fy U, A
T.o= (T  —T.)4+ —Kk (T _T S0f
j2 V/ ( j20 /2) pjkcjij( 2 12) ( )

where k =1,2. The physical meaning of the corresponding
parameters of the system (80) can be found in Reference

[45]. Define the system states x;; = C; — C},, X1, = Cy, = C3,

x21 =T, -T), xp=Tj, — T,*za xy =T, =T, and x3, = T, -
1» Where C ,C,, TT, T}, T, and T7, are the steady-state val-
Jj2

ues. According to locally modal state feedback linearization in
References [19, 45], the switched two continuous stirred tank
reactor delayed systems with the input hysteresis quantizer can
be rewritten as follows:

Xy = X Wy (81a)

X1y = Quy) + Y (81b)

X1 = Po1pXan + Pori (X115 Xp15 X31) + Wy (81c)

Xy = Quy) + @y (%21, X3) + Wiy (81d)

%31 = PanXsy + @31 (X115 X1p, Xo1, X31) + Way (81e)
X3y = Quzy) + @35 (X31, X35) + Wiy (81f)

V1= X1, Y2 = X515 V3 = X31 (81g)

where y;;, represents the unmeasured disturbance with time
delays of the system (81) for i =1,2,3, I =1,2, and k=1,2.
Suppose that the function y;, satisfy wi;; =sin(x;;,x5,) +
X1 SIN(Xy,X15), Wiz = 0.98in(xy;,X5;) + X5 €OS(X51,X3,) — 0.5
Wiz = 0, o110 = 1, o1 = 2, Wy = — @11 + X3 + x5, SIN(e™2) +
X1 SIN(X51,.X15),  Wopp = =@y + X351 + 1.2, sin(e*2) + x;; cos
(%21:X12),  Waa1 = —@op1 + 3.55I0(x51,) + 68I0(xp,) =2, Yoy =
=Py + 28i0(xy,) + 78In(xy,) — 1.5, ¢33 =3, P3; =1, yayy =
— @311 + X33%X5, /(3 + x;,), Wiz = —@31p + 1.5008(x3p)x, /(4 +
X2 ) Wiy = —@sg1 + X3, Xgp, and yyy) = —@ay; + 0.8x3, x5, With

7,(t) = 7,(1) = 73(t) = 0.1(1 + sin (r)?). Then, for i =1,2,3, the
switched high-gain quantized state observer is constructed as

X0 =%+ L — %) (82a)

X2 = Oy) + Li(y; = %11) (82b)

To proceed with, the parameters are considered as L,;; = 10,
L,,, =10, L;;, =8, and L;,, = 8 such that matrices A;; and A,,

are Hurwitz. In addition, one selects Q,; = 61, and Q,, = 51,
with I, = diag{1, 1}. Meanwhile, the symmetric positive definite

matrices are
33 -300] , _[281 250
~300333 | % |=250 285

satisfying (12). Then, the relevant decentralized output-feedback
control information is designed as

P, =

1 - w
Ay = gy Zi19:1S S 5 i1~ iz — ¢z |¥sgn(z;y)

i1~il
i1
’ (83)
b, = Lu 2S8TS, — 7,0
il = il%i 34
1 2a” ZiRy i — Yubi (84)
1 1 1
: - 0.,STS.
Uik 1— p; 2‘1’-22 12 2”2 12 12 (85)

+ei0Ziy + Ciplzip1"sgn(z,5) — 5;2]

wherei =1,2,3,/ =1,2,and k = 1, 2. The design parameters are
chosenas¢;; =50, ¢;5; = 50, ¢;p, = 60,¢;; =1.5,a; = 10,w = 0.5,
¢, =5andy,; =10fori =1,2,3 and / =1, 2. Also, the parame-
ters of the input hysteresis quantizer are chosen as y; = 0.4 and

U min = 25 fori = 1,2, 3. Then, it can be obtained by (52) and (53)
that 4 = 3.14 and » = 20.05. Based on Theorem 1, as the relevant
parameters of the persistent dwell time are given by 7 = 6 s and
f =1 s71, the persistent dwell time stratifies 7, = 0.69.

To proceed with, the basis function vectors S;(X,;) and
S;,(X;,) contain 15 and 25 nodes, and their centers 9
and 9, evenly spaced in [-2,2]%[-3,3]Xx[-4,4] and
[=6,2] X [=3,3] X [<8, 3] X [=3, 6] X [=5, 7] X [=2, 3] X [—4, 8]
and widths 1; =5 and 1, =2 for i =1,2,3, respectively. The
initial vectors are provided as x(#,)" = [0.5,0.2,0.5,0.2,0.5,0. 2]T
%(ty)T =10.1,0.2,0.1,0.2,0.1,0.2]7,0,,(t,) = 0.5,and 6,,(t,) =
for i=1,2,3 with f,€[-0.2,0]. The reference signals
are y;, = 0.5c0s(0.5¢), y,. =0.2sin(3f) +0.5c0s(0.5¢), and
5 = 0.5c08(0.87). The test results of system (81) are shown
in Figures 4-13. It is clear that, as observed from the figures,
all signals in the closed-loop switched system are bounded.
The chattering phenomenon observed in the control inputs,
as shown in Figures 11-13, can be attributed to the follow-
ing factors: (1) While the dynamic surface control technique
simplifies the derivative computation in the backstepping
method, the low-pass filters introduced in this design may
induce high-frequency chattering due to their inherent dynamic
characteristics; (2) Quantization errors reduce the estimation
accuracy of the state observer to balance control input signal
and computing resource constraints, which may contribute to
chattering. The chattering phenomenon is a cumulative result
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FIGURE4 | The system output y,, the

observer state ;.
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FIGURE7 | The tracking errors z,;, z,;, and zj;.
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FIGURE 10 | The switching signal o(f) under the persistent dwell
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O(uy45())-

80 T T T T

ol e Qluzy) | |

Time (sec)

FIGURE 13 | The control inputu,,, and the quantized control input
OUss))-

of these various effects, reflecting the trade-offs between control
objectives and computing resources. Besides, the output tracking
error y; — y; for i = 1,2, 3 converges to a small domain of origin
in finite time under a category of switching signals with the
persistent dwell time.

5 | Conclusion

In this paper, a decentralized finite-time adaptive neural
output-feedback quantized control scheme has been developed
for a class of switched nonlinear large-scale delayed systems. By
introducing the proper multiple Lyapunov-Krasovskii functions,
all the signals in the closed-loop system are semi-globally uni-
formly ultimate bounded under a category of switching signals
with the persistent dwell time via the dynamic surface control
technique. It has been demonstrated that the tracking error can
stay in a small neighborhood of origin in finite time despite the
effects of the time-varying delays.
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FIGURE12 | The controlinputu,,, and the quantized control input
Q(uzg(,))-
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