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Abstract—This paper considers the problem of dynamic output
feedback fault-tolerant control for switched vehicle active suspen-
sion delayed systems with unknown measurement sensitivities.
By utilizing a dynamic switched gain, a switched reduced-
order state observer is designed to estimate unavailable system
states and uncertain system parameters. Subsequently, based
on the Nussbaum gain technique, an output feedback fault-
tolerant control scheme is proposed to attenuate the influence
of the unknown measurement sensitivity on the system output.
In addition, an auxiliary switched system is constructed to make
up for the effect of the actuator input delays and faults via
the backstepping approach. It is proved that all the signals
in the closed-loop switched system are semi-globally uniformly
ultimate bounded. Meanwhile, the displacement of the vehicle
body and the unsprung mass can remain within a small origin
neighbourhood under a set of switching signals with average
dwell time. Case studies are utilized to illustrate the flexibility
and effectiveness of the proposed control approach and indicate
that better stabilization of switched vehicle active suspension
delayed systems can be achieved through the proposed adaptive
fault-tolerant control strategy against the unknown measurement
sensitivity.

Index Terms—Switched vehicle active suspension delayed sys-
tems, dynamic output feedback control, fault-tolerant control,
unknown measurement sensitivities, average dwell time.

I. INTRODUCTION

The vehicle suspension system is regarded as a crucial
component of a vehicle, enhancing overall stability and safety.
It can be categorized into three following kinds: passive, semi-
active, and active suspension. Among these, the vehicle active
suspension system has gained significant attention in recent
decades due to growing customer demands for enhanced vehi-
cle performance [1]–[3]. At present, various control strategies
for the vehicle active suspension system have been developed,
such as the robust control [4], [5], the sliding mode control
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[6], and the adaptive control [7], [8]. However, the majority
of proposed control schemes for vehicle active suspension
systems assume the availability of real-time information from
sensors, actuators, and controllers.

Currently, due to manufacturing constraints, sensor mea-
surements in vehicle suspension systems may not always
be available, leading to unmeasured system states. To over-
come the limitations of state feedback control, researchers
have explored output feedback control methods for vehicle
suspension systems [9]–[12]. In [5], a dynamic output feed-
back controller was presented for a vehicle active suspension
system under the H∞ criteria, employing an event-triggered
mechanism. In [9], the problem of output-feedback satura-
tion control was addressed for quarter-car active suspensions
using an adaptive neural network algorithm. A sensor fault
accommodation strategy was proposed for the vehicle active
suspensions by using the output feedback adaptive control in
[11]. Based on the critic-actor framework, the optimal output-
feedback controller was designed to solve the optimization
for the vehicle active suspension system in [13]. However,
the presence of unknown measurement sensitivity errors in
sensors is inevitable, as sensors cannot be ideal. Thus, the
conventional output feedback control strategies are no longer
feasible for the stabilization of the vehicle suspension system.
Furthermore, the aforementioned studies focused on full-order
state observer-based output feedback control assuming ideal
output measurements. With the limited electronic resources, it
is expected to develop the output feedback control technique
for the vehicle suspension system with the unknown measure-
ment sensitivity through a reduced-order state observer.

Moreover, switched resistance-inductance electromagnetic
actuators are valuable alternatives for vehicle active suspen-
sion systems due to their simplicity, cost-effectiveness, and
enhanced control performance. Hence, the switched vehicle ac-
tive suspension system comprises a vehicle active suspension
system and a switched electromagnetic actuator under a set
of switching signals transmitted over the controller area net-
work (CAN) [14]. Designing an appropriate switching signal,
including multiple Lyapunov functions, common Lyapunov
function, average dwell time (ADT), mode-dependent ADT,
and state-dependent switching law [15]–[22], is a crucial issue
for switched systems. Since the potential switched actuator
faults of vehicle active suspension systems may originate
from the data transmission through the CAN and the external
disturbance, the fault-tolerant ability of the control strategy for
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the vehicle active suspension systems is also an inessential
issue to ensure the operation safety [23]–[25]. Especially,
actuator faults can severely degrade vehicle performance and
contribute to safety accidents [26]. Additionally, the backstep-
ping technique is an effective control design approach to ad-
dress the actuator fault issue for the vehicle active suspension
systems. In [24], the non-fragile fault-tolerant control design
was proposed for vehicle suspension active systems by taking
into account input quantization. In [25], concerned with faults
in the actuator and measurement, the fault-tolerant control was
developed for the discrete-time vehicle active suspension based
on a reduced-order observer.

With the rapidly increasing requirements in autonomous
driving, the CAN, as an advanced communication protocol,
produces better communication service in vehicle network
tasks. However, it is unavoidable to suffer from time delays
due to data transmission through the CAN [1]. Through the
vehicle voltage signals, the vehicle intrusion detection systems
were proposed under low-delay data transmission in [27]. It
is often the case that time delays adversely affect the perfor-
mance of the system actuator. Sometimes, they can even result
in the instabilities of existing control systems [28]. Naturally,
some challenging issues are raised as follows: Is it possible
to solve the output feedback fault-tolerant control problem
for the switched vehicle active suspension delayed system,
where the unknown measurement sensitivity from the system
output and the input delay from the system actuator occur
simultaneously? What should be done to design the proper
multiple Lyapunov functions and the dynamic reduced-order
observer-based adaptive output feedback controllers when the
random road surface excitation takes place under a set of
switching signals?

Motivated by these facts, this study focuses on the out-
put feedback fault-tolerant adaptive control with a dynamic
switched reduced-order state observer for switched vehicle
active suspension delayed systems with the unknown mea-
surement sensitivity. The main contributions of this study are
summarised as follows:

1) Different from the conventional full-order state observer
techniques [11], [13], the switched reduced-order state
observer is designed to estimate unavailable system
states and deal with uncertain system parameters with
a dynamic switched gain. It significantly reduces the
closed-loop system’s order, therefore improving compu-
tational efficiency and real-time performance.

2) The Nussbaum gain technique is applied to detect the
unknown parameters produced via the unknown mea-
surement sensitivity from the system output. For the aux-
iliary switched system, the effect of the actuator input
delay can be weakened via the backstepping approach
using the multiple Lyapunov functions.

3) Actuator faults and switched delayed electromagnetic
systems are simultaneously considered in the vehicle ac-
tive suspension systems. The dynamic output-feedback
fault-tolerant control scheme is flexibly proposed to
address the effects of actuator faults with a set of
switching signals satisfying ADT.

In light of the current state of the art, the presented control
scheme is discussed in more detail below. For vehicle active
suspension delayed systems or non-switched ones, this paper
takes the more general vehicle active suspension systems
with input delays into account, while none of [4], [11], [29]
considered actuator faults and unknown measurement sensi-
tivity simultaneously. At present, for vehicle active suspension
systems, the pioneers have developed a lot of state-feedback
control strategies [2], [5], [7], while a few researchers have
presented the output-feedback control method to estimate the
unmeasurable states [10], [12]. However, when the vehicle
active suspension systems have input delays and actuator faults
under a switching signal, most of the existing control methods
will no longer be suitable. Therefore, how to design an output-
feedback controller to alleviate the impacts of input delays
and actuator faults and to guarantee system stabilization is the
motivation for this paper.

The remainder of this study is arranged as follows. Section
II mainly includes the system description and the related
knowledge. The control strategy and stability analysis are
presented in Section III. Section IV demonstrates the effec-
tiveness and flexibility of the proposed control scheme. The
conclusions are drawn in Section V.

II. SYSTEM DESCRIPTION

A. Switched Vehicle Active Suspension Delayed Systems

According to [4], [10], the switched vehicle active suspen-
sion delayed system over the CAN is depicted in Fig. 1. In fact,
time delays often occur through the CAN. Inspired by [30],
[31], the switched delayed electromagnetic system, as a typical
hybrid system, has excellent performance under a suitable
switching signal. Here, the switched vehicle active suspension
delayed system consists of a vehicle active suspension system
and a switched delayed electromagnetic actuator under a set
of switching signals. Based on Newton’s law and Kirchhoff’s
circuit law, the systems’ dynamic differential equations are
given by 

MvD̈s = −Fa − Fs + FUe,

MuD̈w = Fa + Fs − Fwr − FUe,
uσ(t)(t− τ(t)) = Rσ(t)i+ Lσ(t)i̇,

(1)

where a switching signal σ(t) is a piecewise right continuous
function with k̄ ≥ 2 being the number of subsystems satisfying
σ(t) : [0,∞) → Γ = {1, . . . , k̄}. During the time interval
[tj , tj+1), the k̄j-th subsystem is active with the switching time
instant tj . The sprung mass and the unsprung mass are denoted
as Mv and Mu, respectively. Ds and Dw express the absolute
displacement of the sprung mass and the unsprung mass,
respectively. Dr denotes the random road surface excitation.
Fa and Fwr are the elastic forces, which are produced by the
stiffness coefficients of the sprung mass and unsprung mass,
respectively. Fs is the damping force produced by the stiffness
coefficient of the sprung mass. Meanwhile, the output forces
are denoted as Fa = ca(Ds − Dw), Fs = cs(Ḋs − Ḋw),
and Fwr = Fw + Fr with Fw = cw(Dw − Dr) and
Fr = cr(Ḋw − Ḋr), where ca, cw and cs, cr are the stiffness
coefficients and the damping coefficients, respectively. The
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Fig. 1: The framework of switched vehicle active suspension delayed systems over the CAN.

back electromotive force, FUe, is produced by the voltage
Ue and is given by FUe = 2πTe

Pe
. In addition, Te = cei is

the output torque of the permanent magnet motor, where ce
denotes the equivalent torque and i stands for the current.
Pe expresses the guidance in the switched electromagnetic
actuator. For k ∈ Γ, uk(t − τ(t)) = Us − Ue is the input
signal through the transmission delays over the CAN, where
Us is the input voltage. τ(t) is the unknown time-varying
delay. Lk and Rk denote the inductance and resistance of the
switched electromagnetic actuator, respectively. In this case,
Υ(t0) = Uk(t0) for k ∈ Γ represents the input initial value at
t0 ∈ [−τ, 0].

Define the state variables as x = [x1, x2, x3]> with x1 =
Ds − Dw, x2 = Ḋs − Ḋw, and x3 = 2πceM

Pe
i, where

M = 1
Mv

+ 1
Mu

. In the actual situation, due to manufacturing
reasons, the sensors cannot be ideal such that an unknown
measurement sensitivity in the system output y exists. In addi-
tion, the system output y stands for the suspension space with
unknown measurement sensitivity, i.e., the displacement bias
between the sprung and unsprung mass. Then, the switched
vehicle active suspension delayed system is represented as
follows:

ẋ1 = x2,

ẋ2 = x3 + f2(x2) + ϑh(y) + 1
Mu

Fwr,

ẋ3 = gσ(t)uσ(t)(t− τ(t)) + f3,σ(t)(x3),

y = ρx1,

(2)

Note that during t ∈ [tj , tj+1), one gets σ(t) = k ∈ Γ,
where tj and tj+1 are the time instant. uσ(t)(t − τ(t)) is
the delayed actuator input. ρ is the completely unknown
measurement sensitivity constant from the system output sen-
sor satisfying ρ 6= 0 (its sign and size are both unknown).
f2(x2) = −Mcsx2 and f3,σ(t)(x3) = −Rσ(t)Lσ(t)

x3 are known
functions. ϑ = − caρ is a uncertain parameter with unknown
constants ca and ρ. h(y) = My is a known smooth function

vector, gσ(t) = 2πceM
PeLσ(t)

is an unknown positive parameter with
the unknown constants ce and Pe.

In practice, the complex road surface excitation can fail
the switched delayed electromagnetic actuator in (2). For
k ∈ Γ, the fault model of the k-th addressed actuator input is
considered as follows:

uk(t) = ~kvk(t) + bk(t), ∀t > ts, (3)

where ~k ∈ [0, 1] represents the unknown failure factor, vk(t)
is the actual control input, b(t) is an unknown bias fault
satisfying |bk(t)| ≤ b̄k with its upper bound b̄k, and ts is the
unknown time instant when the failure occurs. The actuator
failure can be categorized into three patterns for k ∈ Γ:

1) If ~k = 1 and bk(t) = 0, then uk(t) = vk(t), indicating
that the k-th actuator works normally.

2) If 0 < ~k < 1 and bk(t) = 0, then uk(t) = ~kvk(t), im-
plying that the k-th actuator loses partial effectiveness.

3) If ~k = 0 and bk(t) 6= 0, then uk(t) = bk(t), describing
that the total effectiveness of the k-th actuator is lost.

Our control objective is to develop a dynamic reduced-order
switched state observer-based output feedback fault-tolerant
control scheme for switched vehicle active suspension delayed
systems with unknown measurement sensitivities. The relative
vertical displacement, the vertical velocity, and the electric
current intensity can be stabilized by the proposed controller
under a set of switching signals with ADT. Meanwhile, the ride
comfort and driving safety for passengers can be improved
regardless of any switched electromagnetic actuator input
delays and failures.

Assumption 1 [6]: The uninterrupted contact from wheels
to the road surface Dw − Dr and its first order derivatives
Ḋw−Ḋr are continuous and bounded, satisfying |Dw−Dr| ≤
D1 and |Ḋw − Ḋr| ≤ D2.

Remark 1: Assumption 1 implies that the states Dw and
Dr of the active suspension system are bounded due to the
physical limitations of power capacity and structure in vehicle
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systems from wheels to the road surface. It is commonly used
when focusing on the stabilization for the active suspension
system [9], [11], [13].

Definition 1 [20]: For the switched systems, a switching
signal σ(t) satisfying an ADT τa > 0 holds that

Nσ(T, t) ≤ N0 +
T − t
τa

, ∀T ≥ t ≥ 0, (4)

where Nσ(T, t) stands for the switching numbers on the time
interval [t, T ] and N0 > 0 is denoted as the chatter bounds.

Lemma 1 [32]: For k ∈ Γ, a symmetric matrix Pk > 0 and
positive numbers νk, %k, l2,k and l3,k exist such that

A>k Pk + PkAk ≤ −νkPk, (5)

−%kPk ≤ BPk + PkB ≤ %kPk, (6)

where Ak =

[
−l2,k 1

−l3,k 0

]
is a Hurwitz matrix and B =

diag{0, 1}.

B. Nussbaum Gain Technique Properties

Without a priori regarding the control gains, the Nussbaum
gain technique will be employed to design the auxiliary
subsystems in this paper. The Nussbaum gain function N (χ)
has two properties satisfying

lim
t→∞

sup
1

t

∫ t

0

N (χ)dχ = +∞, (7a)

lim
t→∞

inf
1

t

∫ t

0

N (χ)dχ = −∞. (7b)

Lemma 2 [33], [34]: Let V (t) ≥ 0 and N (χ) be the smooth
functions over the time interval [0, tf ). For Nussbaum gain
functions N (χ), one gets

V (t) ≤ π0 + e−at
∫ t

0

ε(s)(N (χ(s)) + 1)χ̇(s)easds, (8)

where π0 and a are positive parameters, t ∈ [0, tf ), and ε(·)
is a time-varying parameter satisfying 0 < ε ≤ |ε(·)| ≤ ε̄ with
the unknown constants ε and ε̄ such that

∫ t
0
ε(s)(N (χ(s)) −

1)χ̇(s)easds, χ(t), and V (t) are bounded over the time
interval [0, tf ).

Lemma 3 [35]: For the positive constant tf on the interval
[t0, tf ), if the solution of the closed-loop system is verified to
be bounded, then one gets tf = +∞.

C. Radial Basis Function-Based Neural Network

The radial basis function-based neural network is considered
as follows

f̄NN (X) = W>S(X) ∈ R, (9)

where the weight vector W = [w1, . . . , w`]
> ∈ R` contains `

nodes whose number is greater than one, and its basic function
vector S(X) ∈ R` contains the input vector X . Meanwhile,
the neural network can approximate the unknown continuous
function satisfying with the following equation

f̄(X) = W ∗>S(X) + δ(X), (10)

Fig. 2: The schematic of the neural network’s estimation of
unknown nonlinear functions.

where X = [x1, . . . , xn]> ∈ Rn and δ(X) is the ap-
proximation error satisfying |δ(X)| ≤ δ∗ with any given
positive constant δ∗. In addition, W ∗ = [w∗1 , . . . , w

∗
` ]> ∈

R` demonstrates an ideal weight vector. Consider S(X) =
[s1(X), . . . , s`(X)]> ∈ R` with the Gaussian functions si(X)
as follows for i = 1, . . . , `,

si(X) = exp

[
− (X − ϑi)> (X − ϑi)

ι2

]
, (11)

where ι is the width of the Gaussian function and ϑi =
[ϑi1, . . . , ϑin]> is the center. The schematic of the neural
network’s estimation of unknown nonlinear functions is shown
in Fig. 2. For convenience, f̄(X) is denoted as f̄(X) =
W ∗>S + δ with

W ∗ := arg min
W∈R`

{
sup
X∈Ω

∣∣f̄(X)− f̄NN (X)
∣∣} . (12)

III. MAIN RESULTS

By employing the multiple Lyapunov functions, for the
switched vehicle active suspension delayed system (1), this
section develops an adaptive output-feedback fault-tolerant
control scheme with a dynamic reduced-order switched state
observer-based via the backstepping method, and demonstrates
the stability analysis of the closed-loop system under ADT.

A. Dynamic Reduced-Order Switched State Observer

Together with the inaccurate output information y and
the delayed actuator input uk(t − τ(t)) in (2), the dynamic
reduced-order switched state observer is designed to deal with
the uncertain parameter ϑ as follows:

ξi = φi + li,kr
i−1y, i = 2, 3,

φ̇2 = ξ3 + f2(ξ2)− l2,krξ2 − l2,kṙy,
φ̇3 = f3,k(ξ3)− l3,kr2ξ2 − 2l3,krṙy,

ϕ̇2 = ϕ3 + f2(ϕ2) + h(y)− l2,krϕ2,

ϕ̇3 = f3,k(ϕ3)− l3,kr2ϕ2,

γ̇2 = γ3 + f2(γ2)− l2,krγ2,

γ̇3 = uk(t− τ(t)) + f3,k(γ3)− l3,kr2γ2,

(13)
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where for k ∈ Γ, ξ = [ξ2, ξ3]>, ϕ = [ϕ2, ϕ3]> and γ =
[γ2, γ3]> are the state variables of the switched reduced-order
state observer (13), produced by the measurable states y and
uk(t−τ(t)). f2(∗2) and f3,k(∗3) with ∗ = ξ, ϕ, γ are the same
definition in (2). r is a dynamic switched gain to be designed
later with r(0) = 1.

To proceed with, based on the state variables ξ, ϕ and γ in
(13), the estimated states for the system (2) are constructed as{

x̂2 = 1
ρξ2 + ϑϕ2 + gkγ2,

x̂3 = 1
ρξ3 + ϑϕ3 + gkγ3

(14)

with x̂ = [x̂2, x̂3]>, where x̂i for i = 2, 3 are the estimation
of xi. Then, the error of the reduced-order state observer
estimator is defined as

ε̃i = (xi − x̂i) (15)

and ε̃ = [ε̃2, ε̃3]>. Based on (2) and (13)-(15), one has{
˙̃ε2 = ε̃3 + f2 (ε̃2)− l2,krε̃2 + 1

Mu
Fwr,

˙̃ε3 = f3,k(ε̃3)− l3,kr2ε̃2.
(16)

Then, the scaling transformation for the estimated error dy-
namics system is defined as

εi = r2−i−%k ε̃i, i = 2, 3 (17)

with ε = [ε2, ε3]>, where %k is defined in Lemma 1. Based
on (16) and (17), one gets

ε̇ = rAkε−
ṙ

r
Bkε− %k

ṙ

r
ε+ F1,k + F2,k, (18)

where Ak and Bk are defined in Lemma 1, F1,k =
[r−%kf2(ε̃2), r−1−%kf3,k(ε̃3)]> = [−Mcsε2,−RkLk ε3]>, and
F2,k = [ r

−%k

Mu
Fwr, 0]>. The Lyapunov candidate function is

considered as follows:

Vε = ε>Pkε. (19)

Then, the time derivative of Vε along with the estimated error
dynamics system (18) is

V̇ε = rε>(A>k Pk + PkAk)ε− ṙ

r
ε>(BPk + PkB + %kPk)ε

+ 2ε>Pk(F1,k + F2,k)− %k
ṙ

r
ε>Pkε. (20)

Based on (2), (17), and Young’s inequality, one has

2ε>PkF1,k ≤ λ̄(Pk)ε>Pkε+ ‖F1,k‖2

≤ λ̄(Pk)ε>Pkε+M2c2sε
2
2 +

R2
k

L2
k

ε2
3

≤ λ̄(Pk)ε>Pkε+
M2c2s
λ(Pk)

ε>Pkε+
R2
kε
>Pkε

L2
kλ(Pk)

,

(21)

2ε>PkF2,k ≤ λ̄(Pk)ε>Pkε+ ‖F2,k‖2, (22)

where λ̄(Pk)(λ(Pk)) stand for the largest (smallest) eigenvalue
of the matrix Pk for k ∈ Γ, respectively. According to (21),
(22), and Lemma 1, one gets

V̇ε ≤− rνkε>Pkε−
ṙ

r
ε>(BPk + PkB + %kPk)ε+ ‖F2,k‖2

+ ψkε
>Pkε+ λ̄(Pk)ε>Pkε− %k

ṙ

r
ε>Pkε. (23)

where ψk = λ̄(Pk)+
M2c2s
λ(Pk) +

R2
k

L2
kλ(Pk)

. Meanwhile, the dynamic
switched gain r(t) is designed as

ṙ(t) = max
k∈Γ

{
− r

%k

(
ωkr − ψk − λ̄(Pk)− ς

λ(Pk)

)
, 0

}
,

(24)

where ωk < νk and ς are positive parameters and r(0) = 1.
Inspired by [36], it can be deduced from (24) that r and ṙ are
bounded satisfying 1 ≤ r ≤ r̄, where the constant r̄ is the
upper bound of r. In addition, based on (1) and Assumption
1, one obtains

‖F2,k‖2 =
r̄−2%k

M2
u

F 2
wr =

r̄−2%k

M2
u

(Fw + Fr)
2

≤ r̄−2%k

M2
u

[
2c2w(Dw −Dr)

2 + 2c2r(Ḋw − Ḋr)
2
]

≤ 2r̄−2%k

M2
u

(c2wD
2
1 + c2rD

2
2). (25)

By substituting (24) and (25) into (23), one has

V̇ε ≤ −ωkε>Pkε− ς‖ε‖2 + δ0,k, (26)

where ωk and δ0,k are positive constants defined as ωk =

νk − ωk and δ0,k = 2r̄−2%k

M2
u

(c2wD
2
1 + c2rD

2
2), respectively.

B. Output Feedback Fault-Tolerant Controller Design

Firstly, an auxiliary switched system is designed to compen-
sate for the influence of the actuator input delay as follows:{

$̇i = $i+1 − di,σ(t)$i, i = 1, 2,

$̇3 = −d3,σ(t)$3 + uσ(t)(t− τ(t))− uσ(t)(t),
(27)

where σ(t) is a switching signal. $i and di,σ(t) for i = 1, 2, 3
are the auxiliary switched system states and positive designed
parameters, respectively. In addition, according to the back-
stepping approach, the following changes of a coordinate for
all subsystems are defined as{

z1 = y −$1,

zi = γi − αi−1 −$i, i = 2, 3,
(28)

where zi for i = 1, 2, 3 is the errors of the coordinate
transformation and αi−1 for i = 2, 3 stands for the virtual
control inputs. As a matter of convenience, the unknown ideal
value is expressed as

θ∗i = max
k∈M

{
‖W ∗i,k‖2

}
, (29)

where i = 0, 1, 2, . . . , n, W ∗i,k stands for the ideal constant
weight vector; meanwhile, θ̃i is the estimation error satisfying
θ̃i = θ∗i − θ̂i, and θ̂i is the estimation of θ∗i . Then, the detailed
design process of the control scheme is shown in the following
steps.

Initial Step: Based on (2), (14), (15), (17), and (27), one
gets

ż1 = ρ

(
ε̃2 +

1

ρ
ξ2 + ϑϕ2 + gkγ2

)
−$2 + d1,k$1.
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The Lyapunov function is considered as follows:

V1,k =
1

2
z2

1 +
1

2`1
θ̃>1 θ̃1 + Vε, (30)

where for k ∈ Γ, `1 is a positive constant. To proceed with
(28), one obtains

V̇1,k = ρz1

[
ε̃2 +

1

ρ
ξ2 + ϑϕ2 + gk(z2 + α1 +$2)

]
−$2z1 + d1,k$1z1 −

1

`1
θ̃>1

˙̂
θ1 + V̇ε. (31)

By using Young’s inequality and (17), it can be obtained

ρz1ε̃2 ≤
1

4ς
ρ2r2%kz2

1 + ς‖ε‖2. (32)

Then, f̄1,k(X1) = ρ( 1
4ς1
ρr2%kz1 + ϑϕ2) + ξ2 + (ρgk − 1)$2

is denoted as the uncertain continuous function with X1 =
[z1, r, ξ2, ϕ2, $2]>. Based on (10)-(12), it induces

f̄1,k(X1) = W ∗>1,kS1 + δ1,k, (33)

where δ1,k is the approximation error with |δ1,k| < δ∗1 and
δ∗1 is a positive constant. Based on (29), (33), and Young’s
inequality, one obtains

z1f̄1,k(X1) ≤ 1

2a2
1

z2
1θ
∗
1S
>
1 S1 +

1

2
a2

1 +
1

2
z2

1 +
1

2
δ∗21 , (34)

where a1 is a positive constant. Since ρ and gk are respectively
the unknown measurement sensitivity and the unknown control
gain term, it is difficult to handle with the existing typical
backstepping approach. Thus, a Nussbaum gain N (χ1) is
utilized to deal with the issue from the unknown coefficients
in the initial step. Furthermore, the virtual controller input α1

and the adaptive law ˙̂
θ1 can be considered as

α1 = N (χ1)(c1z1 + Ξ1), (35)
˙̂
θ1 =

`1
2a2

1

z2
1S
>
1 S1 − κ1θ̂1 (36)

with Ξ1 = 1
2a21

z1θ̂1S
>
1 S1 + 1

2z1 + d1,k$1, where c1 and κ1

are positive constants. Meanwhile, the related control designs
using the Nussbaum-type technique are as follows:

N (χ1) = eχ
2
1 cosχ1, χ̇1 = c1z

2
1 + Ξ1z1. (37)

Substituting (48)-(37) into (31) obtains

V̇1,k ≤− ωkε>Pkε+
κ1

`1
θ̃>1 θ̂1 − c1z2

1 + Θ1,k

+ (ρgkN (χ1) + 1)χ̇1 + ρgkz1z2, (38)

where Θ1,k = δ0,k + 1
2a

2
1 + 1

2δ
∗2
1 .

Step 2: Based on (13), (27), and (28), one has

ż2 = γ3 + f2(γ2)− l2,krγ2 − α̇1 −$3 + d2,k$2.

The Lyapunov function can be constructed by

V2,k =
1

2
z2

2 +
1

2`2
θ̃>2 θ̃2 + V1,k, (39)

where `2 is a positive parameter. Furthermore, it is deduced
from (28) that

V̇2,k = z2(z3 + α2 + f2(γ2)− l2,krγ2 − α̇1 + d2,k$2)

− 1

`2
θ̃>2

˙̂
θ2 + V̇1,k. (40)

Similar to the initial step, the uncertain functions are con-
sidered as f̄2,k(X2) = f2(γ2) − l2,krγ2 − α̇1 + ρgkz1 with
X2 = [γ2, r, χ1, y, θ̂1, $1]> and α̇1 = ∂α1

∂χ1
χ̇1 + ∂α1

∂y ẏ +

∂α1

∂θ̂1

˙̂
θ1 + ∂α1

∂$1
$̇1. Based on (10)-(12), the neural network

approximation is satisfied by

f̄2,k(X2) = W ∗>2,kS2 + δ2,k, (41)

where the error of approximation δ2,k is satisfied by |δ2,k| <
δ∗2 with positive parameter δ∗2 .

Through Young’s inequality, (29), and (41), one has

z2f̄2,k(X2) ≤ 1

2a2
2

z2
2θ
∗
2S
>
2 S2 +

1

2
a2

2 +
1

2
z2

2 +
1

2
δ∗22 , (42)

where a2 is the positive designed parameter. Meanwhile,
the virtual controller input α2 and the adaptive law ˙̂

θ2 are
considered as

α2 = −c2z2 − Ξ2, (43)
˙̂
θ2 =

`2
2a2

2

z2
2S
>
2 S2 − κ2θ̂2 (44)

with Ξ2 = 1
2a22

z2θ̂2S
>
2 S2 + 1

2z2 + d2,k$2, where c2 and κ2

are positive constants.
Substituting (41)-(44) into (40) obtains

V̇2,k ≤− ωkε>Pkε+

2∑
i=1

(
κi
`i
θ̃>i θ̂i − ciz2

i

)
+ Θ2,k

+ (ρgkN (χ1) + 1)χ̇1 + z2z3, (45)

where Θ2,k = Θ1,k + 1
2a

2
2 + 1

2δ
∗2
2 .

Step 3: From (3), (13), (27), and (28), one can obtain

ż3 = f3,k(γ3)− l3,kr2γ2 − α̇2 + d3,k$3 + ~kvk(t) + bk(t).

Let the Lyapunov function candidate be

V3,k =
1

2
z2

3 +
1

2`3
θ̃>3 θ̃3 + V2,k, (46)

where `3 is a positive constant. Similar to the procedure from
(31) to (38), it yields

V̇3,k = z3(f3,k(γ3)− l3,kr2γ2 − α̇2 + d3,k$3

+ ~kvk(t) + bk(t))− 1

`3
θ̃>3

˙̂
θ3 + V̇2,k. (47)

By utilizing Young’s inequality and (3), one has

z3bk(t) ≤ 1

2
z2

3 +
1

2
b̄2k. (48)

To proceed, f̄3,k(X3) = f3,k(γ3) − l3,kr
2γ2 − α̇2 +

z2 is expressed as the uncertain function with X3 =
[γ2, γ3, r, χ1, y, θ̂1, θ̂2, $2, $3]> and α̇2 = ∂α2

∂χ1
χ̇1 + ∂α2

∂y ẏ +

∂α2

∂γ2
γ̇2 + ∂α2

∂θ̂1

˙̂
θ1 + ∂α2

∂θ̂2

˙̂
θ2 + ∂α2

∂$1
$̇1 + ∂α2

∂$2
$̇2. Based on (10)-

(12), the neural network approximation is given by

f̄3,k(Xn) = W ∗>3,kS3 + δ3,k, (49)
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where δ3,k is the approximation error and a positive constant
δ∗3 is satisfied by |δ3,k| < δ∗3 . Based on Young’s inequality,
(29), and (49), it yields

z3f̄3,k(X3) ≤ 1

2a2
3

z2
3θ
∗
3S
>
3 S3 +

1

2
a2

3 +
1

2
z2

3 +
1

2
δ∗23 , (50)

where a3 is a positive parameter.
Then, a Nussbaum gain N (χ3) is utilized to deal with the

unknown coefficients ~k. To proceed with, the actual controller
input vk and the adaptive laws ˙̂

θ3 can be considered as

vk = N (χ3)(c3z3 + Ξ3), (51)
˙̂
θ3 =

`1
2a2

3

z2
3S
>
3 S3 − κ3θ̂3 (52)

with Ξ3 = 1
2a23

z3θ̂3S
>
3 S3 + 1

2z3 + d3,k$3, where c3 and κ3

are positive constants. Meanwhile, the related control designs
using the Nussbaum-type technique are as follows:

N (χ3) = eχ
2
3 cosχ3, χ̇3 = c3z

2
3 + Ξ3z3. (53)

Combining (47)-(53) results in

V̇3,k ≤
3∑
i=1

(
κi
`i
θ̃>i θ̂i − ciz2

i + N̄ (χi)χ̇i

)
− ωkε>Pkε+ Θ3,k, (54)

where N̄ (χ1) = ρgkN (χ1) + 1, N̄ (χ2) = 0 with χ2 = 0,
N̄ (χ3) = ~kN (χ3)+1, and Θ3,k = Θ2,k+ 1

2a
2
3 + 1

2δ
∗2
3 + 1

2 b̄
2
k.

C. Stability Analysis

For notational convenience, the following definitions are
used:

µ = min
k∈Γ

{
ωkλ(Pk)

λ̄(Pk)
, 2ci, κi, 2`i,k, i = 1, 2, 3

}
, (55)

ζ = max

{
λ̄(Pk)

λ(Pp)
, k, p ∈ Γ

}
. (56)

It is clear that µ > 0 and ζ ≥ 1 are the two known parameters
by suitably selecting Pk, ωk, ci, κi and `i,k. The main theorem
in this paper is summarized as follows.

Theorem 1: Consider the switched vehicle active suspen-
sion delayed system (1) satisfying Assumptions 1. The out-
put feedback fault-tolerant controller (51) with the virtual
controllers (35), (43), the dynamic reduced-order switched
state observer (13), and the adaptive laws (36), (44), (52)
can ensure all the closed-loop signals achieve semi-globally
uniformly ultimate bounded. Meanwhile, the system output
y with the unknown measurement sensitivity can stay in the
small neighbourhood of zero under a set of switching signals
with ADT. The block diagram of the proposed control scheme
is depicted in Fig. 3.

Proof: The proof is divided into two parts to analyse the
boundedness of all the signals in the closed-loop system. In
part 1), the semi-global stability is verified for the switched ve-
hicle active suspension delayed system with a set of switching
signals satisfying ADT. In part 2), the system output y with
the unknown measurement sensitivity is verified to stay in the
small origin neighbourhood.

Fig. 3: The block diagram of the proposed control scheme.

1) To analyze the stability of the auxiliary switched system
(27), the following Lyapunov function is constructed as

V$ =
1

2

3∑
i=1

$2
i . (57)

Then, one gets

V̇$ = $3(−d3,k$3 + uk(t− τ(t))− uk(t))

+

2∑
i=1

$i($i+1 − di,k$i). (58)

Similar to the result in [37], |uk(t− τ(t))− uk(t)| ≤ u∗k can
be approached with a positive constant u∗k for k ∈ Γ. Then,
by using Young’s inequality, one obtains

V̇$ ≤−
3∑
i=1

di,k$
2
i +

2∑
i=1

$i$i+1 +$3u
∗
k

≤−
3∑
i=1

`i,k$
2
i +

1

2
u∗k, (59)

where `i,k for i = 1, 2, 3 is a positive parameter satisfying
`1,k = d1,k − 1

2 , `2,k = d2,k − 1, and `3,k = d3,k − 1. Here,
based on (19), (30), (39), (46), and (57), the following multiple
Lyapunov functions for k ∈ Γ are constructed by

Vk(X) = ε>Pkε+
1

2

3∑
i=1

(
z2
i +

1

`i
θ̃>i θ̃i +$2

i

)
, (60)

where X = [ε2, ε3, θ̃1, θ̃2, θ̃3, $1, $2, $3, z1, z2, z3]>. It is
clear from (60) that two K∞ functions α(‖X‖) and α(‖X‖)
exist and hold that

α(‖X‖) ≤ Vk(X) ≤ α(‖X‖). (61)

In addition, based on (56), it induces

Vk(X) ≤ ζVp(X), k, p ∈ Γ. (62)

Furthermore, it yields

V̇k ≤
3∑
i=1

(
κi
`i
θ̃>i θ̂i − ciz2

i − `i,k$2
i + N̄ (χi)χ̇i

)
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− ωkε>Pkε+ Θ3,k +
1

2
u∗k. (63)

Meanwhile, the terms κi
`i
θ̃>i θ̂i from (63) satisfies

κi
`i
θ̃>i θ̂i ≤

κi
2`i

θ∗2i −
κi
2`i

θ̃>i θ̃i, (64)

According to (63)-(64), one has

V̇k ≤−
3∑
i=1

(
κi
2`i

θ̃>i θ̃i + ciz
2
i + `i,k$

2
i − N̄ (χi)χ̇i

)
− ωkε>Pkε+ Θ

≤− µVk +

3∑
i=1

N̄ (χi)χ̇i + Θ, (65)

where Θ = maxk∈Γ{Θ3,k + 1
2u
∗
k +

∑3
i=1

κi
2`i
θ∗2i }.

Let the initial time be t0 = 0. Define the each switching
time as t1, t2, . . . , tNσ(T,0) on the instant [0, T ] for ∀T ≥ 0.
Consider the function Φ(t) = eµtVσ(t)(X(t)). Based on (65),
one has Φ̇(t) ≤ Θeµt+eµt

∑3
i=1 N̄ (χi)χ̇i. On the time instant

[tj , tj+1), it implies from (62) that

Φ (tj+1) ≤ ζ
[
Φ (tj) +

∫ tj+1

tj

Λeµtdt

]
, (66)

where Λ = Θ+
∑3
i=1 N̄ (χi)χ̇i. On the instant [0, T ], iterating

the inequality (66) from j = 0 to j = Nσ(T, 0)−1, it induces

Φ(T−) ≤ Φ(tNσ(T,0)) +

∫ T

tNσ(T,0)

Λeµtdt

≤ ζ

[
Φ(tNσ(T,0)−1) +

∫ tNσ(T,0)

tNσ(T,0)−1

Λeµtdt

+ ζ−1

∫ T

tNσ(T,0)

Λeµtdt

]
≤ · · ·

≤ ζNσ(T,0)

[
Φ(0) +

Nσ(T,0)−1∑
j=0

ζ−j
∫ tj+1

tj

Λeµtdt

+ ζ−Nσ(T,0)

∫ T

tNσ(T,0)

Λeµtdt

]
. (67)

By utilizing τa > log ζ
µ , for ∀a ∈ (0, µ− log ζ

µ ), one gets τa >
log ζ
µ−a . In addition, based on Definition 1, one has Nσ(T, t) ≤
N0 + (µ−a)(T−t)

log ζ for ∀T ≥ t ≥ 0. Thus, under the inequality
Nσ(T, 0)− j ≤ 1 +Nσ(T, tj+1) with j = 0, 1, . . . , Nσ(T, 0),
it yields

ζNσ(T,0)−j ≤ ζ1+N0e(µ−a)(T−tj+1). (68)

Furthermore, for t ∈ [tj , tj+1), since a < µ, it induces∫ tj+1

tj

Θeµtdt ≤ e(µ−a)tj+1

∫ tj+1

tj

Θeatdt (69)

and ∫ tj+1

tj

N̄ (χi)χ̇ie
µtdt ≤

∫ χi(tj+1)

χi(tj)

∣∣N̄ (χi)
∣∣ eµtdχi

≤ e(µ−a)tj+1

∫ χi(tj+1)

χi(tj)

∣∣N̄ (χi)
∣∣ eatdχi. (70)

Combining (67)-(70) results in

Φ
(
T−
)
≤ ζNσ(T,0)Φ(0) + ζ1+N0e(µ−a)T

[ ∫ T

0

Θeatdt

+

3∑
i=1

∫ χi(T )

χi(0)

∣∣N̄ (χi)
∣∣ eatdχi]. (71)

Under the definition of Φ(t), one obtains for ∀T > 0,

Vσ(T−)

(
X
(
T−
))
≤ eN0 log ζe(

log ζ
τa
−µ)Tα(‖X‖)

+ ζ1+N0

(
Θ

a
+ e−aT

3∑
i=1

∫ χi(T )

χi(0)

∣∣N̄ (χi)
∣∣ eatdχi). (72)

It can be concluded that if τa satisfies τa > log ζ
µ , one gets

Vσ(T−)(X(T−))

ζ1+N0
≤

3∑
i=1

∫ χ(T )

χ(0)

∣∣N̄ (χi)
∣∣ dχi + π0 (73)

based on 0 < e−a(T−t) ≤ 1, where π0 =
1

ζ1+N0
[eN0 log ζα(‖X(0)‖)+ζ1+N0 Θ

a ]. Here, N̄ (χi) is a Nuss-
baum gain function. According to Lemma 2, for ∀Tf > 0,
the boundeness of χi(T ) for i = 1, 2, 3 can be verified on
[0, Tf ). Furthermore, for ∀Tf > 0, one has Vσ(T )(X(T )) and∫ χ(T )

χ(0)

∣∣N̄ (χi)
∣∣ dχi for i = 1, 2, 3 are bounded on [0, Tf ).

Therefore, it can be concluded that if the ADT satisfies
τa >

ln ζ
µ , then ε2, ε3, z1, z2, z3, θ̃1, θ̃2, θ̃3, $1, $2, and

$3 are bounded for any bounded initial values. Together with
(17) and (24), ε̃ is bounded. To estimate some terms on the
right side of (15), the following proposition is provided for
the boundedness of all the signals in the closed-loop switched
system, whose proof is placed in the Appendix.

Proposition 1: For the dynamic reduced-order switched state
observer (13), under the boundedness of y, r, ṙ and ε̃ on
[0, Tf ), the states ξ, φ, ϕ, γ, x̂ and x are bounded on [0, Tf ).

According to Proposition 1, all the signals in the closed-loop
switched system are bounded on [0, Tf ). Based on Lemma
3, the above discussion is true for Tf = +∞. Hence, for
the bounded initial conditions, all signals in the closed-loop
switched system are bounded under a set of switching signals
with ADT satisfying τa > ln ζ

µ .
2) Denote ō1 = sup{

∑3
i=1

∣∣N̄ (χi)
∣∣ χ̇i}. Then, one gets

e−aT
3∑
i=1

∫ χi(T )

χi(0)

∣∣N̄ (χi)
∣∣ eatdχi

≤ e−aT
3∑
i=1

∫ T

0

∣∣N̄ (χi)
∣∣ eatχ̇idt

≤ ō1

a
(1− e−aT ) ≤ ō1

a
. (74)

According to (72) and (74), one can obtain

1

2
z2

1(T ) ≤ ō2, (75)

where ō2 = eN0 log ζe(
log ζ
τa
−µ)Tα(‖X(0)‖) + ζ1+N0 Θ+ō1

a .
Together with τa >

ln ζ
µ and the definition of z1 in (28), it

yields

lim
t→∞

y2(t) = lim
t→∞

z1(t)2 ≤ ō3, (76)
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where ō3 = 2(eN0 log ζα(‖X(0)‖) + ζ1+N0 Θ+ō1
a ). It is clear

from (76) that the system output with the unknown measure-
ment sensitivity can stay in a small neighbourhood of zero
by choosing appropriately designed parameters. The proof has
been completed.

Remark 2: A guideline from Steps I to IV for the proposed
output-feedback control scheme is given to clarify the param-
eter design.

Step I: Select the proper parameters l2,k and l3,k, such that
the matrix Ak is Hurwitz. Choose the proper parameters νk
and %k. Then, a symmetric matrix Pk > 0 can be calculated
by solving the inequalities (5) and (6).

Step II: Decide the number of neural network nodes and
Gaussian functions, then determine the neural network (10).

Step III: Select appropriate controller parameters ωk, ς , ci,
`i, ai, κi, and di,k, for i = 1, 2, 3 and k ∈ Γ, and then
determine the controllers (35), (43), and (51) with the adaptive
laws (36), (44), and (52).

Step IV: Determine the designed parameters of ADT µ > 0
in (55) and ζ ≥ 1 in (56).

IV. CASE STUDIES

This section provides the case studies to show the flexibility
and effectiveness of the proposed adaptive output feedback
fault-tolerant control scheme on the switched vehicle active
suspension delayed system.

Here, the switched vehicle active suspension delayed system
consists of two subsystems, where σ(t) : [0,∞) → Γ =
{1, 2}. The parameters of the switched vehicle active suspen-
sion delayed system are chosen as Mv = 350 kg, Mu = 40 kg,
cs = 1000 N · s/m, cw = 200000 N/m, cr = 100 N · s/m,
R1 = 30 Ω, R2 = 28 Ω, L1 = 40 H, and L2 = 35 H.
In addition, the unknown system parameter is selected as
ca = 20000 N/m, ce = 20, Pe = 2, τ(t) = 0.1(1 + sin2(t)),
and ρ = 0.8. Then, the parameters of the controller are selected
as l2,1 = 20, l3,1 = 10, l2,2 = 18, l3,2 = 15, ν1 = 2, %1 = 10,
ν2 = 2.2, %2 = 8, ω1 = 1, ω2 = 1.2, ς = 0.5, c1 = 0.2,
c2 = 0.2, c3 = 0.2, `1 = 0.1, `2 = 0.1, `3 = 0.1, a1 = 0.5,
a2 = 0.2, a3 = 0.5, κ1 = 5, κ2 = 5, κ3 = 5, d1,k = 0.6,
d2,k = 1.1, and d3,k = 1.1 for k ∈ Γ. Meanwhile, based
on Lemma 1, the symmetric positive definite matrices can be
obtained as follows:

P1 =

[
1.152 −0.265

−0.265 0.449

]
, P2 =

[
1.149 −0.230

−0.230 0.399

]
.

To proceed, the basis function vectors S1(X1), S2(X2),
S3(X3) contain 15, 22, and 30 nodes, and their centres ϑ1,
ϑ2, ϑ3 evenly spaced in [−2, 2]× [−2, 2]× [−7, 5]× [−8, 6]×
[−4, 7], [−2, 2]× [−8, 8]× [−3, 3]× [−7, 5]× [−2, 7]× [−6, 5],
[−11, 5] × [−2, 2] × [−7, 5] × [−8, 6] × [−4, 7] × [−5, 7] and
widths ι1 = 2, ι2 = 2.5, ι3 = 4, respectively. And the faults
of the switched delayed electromagnetic actuator are modelled
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Fig. 4: The suspension space x1 of Cases 1-3.
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Fig. 5: The relative vertical velocity x2 of Cases 1-3.

as

uk =



~vk + b1,k(t), 1 ≤ t ≤ 2,

~vk + b2,k(t), 5 ≤ t ≤ 8,

~vk + b3,k(t), 15 ≤ t ≤ 20,

~vk, others,

(77)

where ~ = 0.5, b1,k(t) = 0.03 sin(4πt), b2,k(t) =
0.2 cos(3πt), and b3,k(t) = 0.01 sin(6πt) for k ∈ Γ.

A. Performances of the Proposed Control Strategy

Derived from Theorem 1, all the signals are bounded in the
resulting closed-loop system under a set of switching signals
with ADT satisfying τa = 6.31 > ln 3.53

0.20 . The initial vectors
are provided as x1(t0) = 0.02, x2(t0) = 0.04, x3(t0) = 0.02,
θ̂1(t0) = 0.05, θ̂2(t0) = 0.1, θ̂3(t0) = 0.3, r(t0) = 1,
χ1(t0) = 0.02, χ3(t0) = 0.01, and others are chosen as zero.
In order to test the proposed control strategy, three cases are
considered as follows:

Case 1: Consider the vehicle driving on the even ground,
i.e., Dr = 0 and the boundedness conditions of the uninter-
rupted contact from wheels to the road surface are selected as
D1 = 0.001 and D2 = 0.001;
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Fig. 6: The electric current intensity x3 of Cases 1-3.
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Fig. 7: The designed control input uk under actuator faults of
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Fig. 8: The dynamic switched gain r(t) and the switching
signal σ(t).

Case 2: Consider the vehicle driving on the even ground,
i.e., Dr = 0 and the boundedness conditions of the uninter-
rupted contact from wheels to the road surface are selected as
D1 = 0.0001 and D2 = 0.0001;

Case 3: Consider the vehicle driving on the bumpy ground,

i.e.,

Dr =

{
hr
2

(
1− cos

(
2πvs
Lb

t
))

, 0 ≤ t ≤ 3,

0, others,
(78)

where hr is the height of the pavement, vs stands for the ve-
locity of the vehicle, and Lb expresses the length of the pave-
ment. Here, these parameters are selected as hr = 0.004 m,
vs = 40 km/h, and Lb = 7 m. The boundedness conditions
of the uninterrupted contact from wheels to the road surface
are selected as D1 = 0.0001 and D2 = 0.0001.

The test results of Cases 1-3 are described in Figs. 4-8.
The suspension space of Cases 1-3 can be stabilized in the
original region in Fig. 4. The relative vertical velocity response
of Cases 1-3 is exhibited in 5. The electric current intensity of
Cases 1-3 is shown in Fig. 6. The control input of Cases 1-3 is
illustrated in Fig. 7. Furthermore, Fig. 8 displays the dynamic
gain of the reduced-order switched state observer under a set
of switching signals with ADT. Compared with Cases 1 and 2,
the damping element from the active suspension systems can
induce some oscillations at the start of the simulation, which
are then gradually mitigated by the action of the proposed
controller. Compared with Cases 2 and 3, the different road
surface conditions may lead to different transient oscillatory
behaviors in the system at the beginning. Finally, it is clear
that all signals in the closed-loop system are bounded with the
random road surface excitation over time with ADT.

B. Comparison with Other Control Strategies

In what follows, we demonstrate the effectiveness of the
proposed method compared with the state feedback control
scheme in [29] and the full-order observer-based output feed-
back control scheme in [13]. Additionally, the initial values
are the same as the aforementioned ones in Case 3. Also, the
road surface excitation is considered as the same situation in
Case 3. The compared results of the different strategies are
shown in Figs. 9-12.

The suspension space of the different strategies is displayed
in Fig. 9. The relative vertical velocity response of the different
strategies is shown in 10. The electric current intensity of the
different strategies is shown in Fig. 11. The control input of
the different strategies is shown in Fig. 12. In Figs. 9 and 12, it
can be observed that the convergence rate of the state-feedback
control scheme is faster than that of the proposed method;
however, this comes at the expense of the state feedback
control scheme generating a larger overshoot under a greater
control input magnitude compared with the proposed method.
In addition, the proposed method exhibits a lower oscillation
frequency while concurrently demonstrating a quicker conver-
gence speed. Therefore, compared with the other two control
strategies, the proposed reduced-order observer-based output
feedback control scheme has a better performance for the
vehicle active suspension delayed system.

V. CONCLUSION

This paper proposes a dynamic output feedback adaptive
fault-tolerant control strategy for the switched vehicle active
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Fig. 9: The suspension space x1 of the different strategies.
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Fig. 10: The relative vertical velocity x2 of the different
strategies.
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Fig. 11: The electric current intensity x3 of the different
strategies.

suspension delayed system in the presence of the unknown
measurement sensitivity from the system output. By utilizing
the information from the systems output and the actuator’s
delayed input, the switched reduced-order state observer is
constructed to compensate for the unavailable states with a
dynamic switched gain. It is demonstrated that the effect of
the actuator input delay and fault can be compensated by the
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Fig. 12: The designed control input uk under actuator faults
of the different strategies.

switched auxiliary systems via the backstepping technique.
Based on the Nussbaum gain technique and the multiple
Lyapunov functions, the proposed dynamic output feedback
fault-tolerant control scheme can ensure that all the signals in
the closed-loop system are semi-globally uniformly ultimate
bounded, and its relative vertical displacement stays in the
small zero neighbourhood under a set of switching signals with
ADT. Finally, the flexibility and effectiveness of the proposed
control approach have been illustrated by the case studies. In
the next work, the output-feedback control problem of global
stabilization will be investigated for switched semi-vehicle
or full-vehicle active suspension systems under asynchronous
switching with mode-dependent or edge-dependent ADT.

APPENDIX

Proof of Proposition 1: Under a transformation φ̃i =
r2−i−%kφi with φ̃ = [φ̃2, φ̃3]>, the boundedness of φ will
be verified as follows. Consider the Lyapunov function as
Vφ̃ = φ̃>Pkφ̃. Then, it induces a similar result from (26) that

V̇φ̃ ≤ 2φ̃>PkK1,kr
2−%ky − 2φ̃>PkK2r

−%k ṙy

− ωkφ̃>Pkφ̃− ς‖φ̃‖2

≤ 1

ς1
‖PkK1,k‖2r4−2%ky2 +

1

ς2
‖PkK2‖r−2%k ṙ2y2

− ωkφ̃>Pkφ̃− (ς − ς1 − ς2)‖φ̃‖2, (79)

where K1,k = [l3,k, 0]> and K2 = [1, 2]> are parameter
vectors. According to the definition of θ̃i for i = 1, 2, 3, one
can know that θ̂i is bounded. Then, by (35), (43), and (51),
one gets αi for i = 1, 2, 3 is bounded on [0, Tf ). Then, from
(51), the actual control input υk is bounded on [0, Tf ). Based
on (28), y, γ2 and γ3 are bounded on [0, Tf ). Meanwhile, x1

is bounded based on (2). Combined with the boundedness of
y, r, and ṙ, it can be verified from (13) and (79) that φ and
ξ are bounded on [0, Tf ). Similar to (79), the boundedness
of ϕ can be obtained on [0, Tf ). To proceed, based on the
(14), x̂ is bounded on [0, Tf ). Thus, according to (15) and the
boundedness of ε̃, one gets x2 and x3 are bounded on [0, Tf ).
The proof has been completed.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2024.3370094

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on February 27,2024 at 21:29:31 UTC from IEEE Xplore.  Restrictions apply. 



12

REFERENCES

[1] H. Kim, W. Yoo, S. Ha, and J. M. Chung, “In-vehicle network average
response time analysis for CAN-FD and automotive ethernet,” IEEE
Transactions on Vehicular Technology, vol. 72, no. 6, pp. 6916–6932,
2023.

[2] Q. Zeng and J. Zhao, “Dynamic event-triggered-based adaptive finite-
time neural control for active suspension systems with displacement
constraint,” IEEE Transactions on Neural Networks and Learning Sys-
tems, 2022, doi: 10.1109/TNNLS.2022.3201695.

[3] C. M. Ho and K. K. Ahn, “Observer based adaptive neural networks
fault-tolerant control for pneumatic active suspension with vertical
constraint and sensor fault,” IEEE Transactions on Vehicular Technology,
vol. 72, no. 5, pp. 5862–5876, 2023.

[4] M. Zhang, X. Jing, L. Zhang, W. Huang, and S. Li, “Toward a finite-
time energy-saving robust control method for active suspension systems:
Exploiting beneficial state-coupling, disturbance, and nonlinearities,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 53,
no. 9, pp. 5885–5896, 2023.

[5] F. Viadero-Monasterio, B. L. Boada, H. Zhang, and M. J. L. Boada,
“Integral-based event triggering actuator fault-tolerant control for an
active suspension system under a networked communication scheme,”
IEEE Transactions on Vehicular Technology, vol. 72, no. 11, pp. 13 848–
13 860, 2023.

[6] H. Chen, Y. J. Liu, L. Liu, S. Tong, and Z. Gao, “Anti-saturation-based
adaptive sliding-mode control for active suspension systems with time-
varying vertical displacement and speed constraints,” IEEE Transactions
on Cybernetics, vol. 52, no. 7, pp. 6244–6254, 2022.

[7] J. Na, Y. Huang, X. Wu, S. F. Su, and G. Li, “Adaptive finite-time fuzzy
control of nonlinear active suspension systems with input delay,” IEEE
Transactions on Cybernetics, vol. 50, no. 6, pp. 2639–2650, 2020.

[8] W. Wu, Z. Peng, D. Wang, L. Liu, and Q. L. Han, “Network-based line-
of-sight path tracking of underactuated unmanned surface vehicles with
experiment results,” IEEE Transactions on Cybernetics, vol. 52, no. 10,
pp. 10 937–10 947, 2022.

[9] T. Wang and Y. Li, “Neural-network adaptive output-feedback saturation
control for uncertain active suspension systems,” IEEE Transactions on
Cybernetics, vol. 52, no. 3, pp. 1881–1890, 2022.

[10] Y. Li, T. Wang, W. Liu, and S. Tong, “Neural network adaptive
output-feedback optimal control for active suspension systems,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 6,
pp. 4021–4032, 2022.

[11] S. Yan, W. Sun, X. Yu, and H. Gao, “Adaptive sensor fault accommoda-
tion for vehicle active suspensions via partial measurement information,”
IEEE Transactions on Cybernetics, vol. 52, no. 11, pp. 12 290–12 301,
2022.

[12] H. Pan and W. Sun, “Nonlinear output feedback finite-time control for
vehicle active suspension systems,” IEEE Transactions on Industrial
Informatics, vol. 15, no. 4, pp. 2073–2082, 2019.

[13] Y. Li, T. Wang, W. Liu, and S. Tong, “Neural network adaptive
output-feedback optimal control for active suspension systems,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 6,
pp. 4021–4032, 2022.

[14] J. Lin, K. W. E. Cheng, Z. Zhang, N. C. Cheung, X. Xue, and T. W. Ng,
“Active suspension system based on linear switched reluctance actuator
and control schemes,” IEEE Transactions on Vehicular Technology,
vol. 62, no. 2, pp. 562–572, 2013.

[15] Z. Li, G. Cao, W. Xie, R. Gao, and W. Zhang, “Switched-observer-based
adaptive neural networks tracking control for switched nonlinear time-
delay systems with actuator saturation,” Information Sciences, vol. 621,
pp. 36–57, 2023.

[16] Z. Li, D. Yue, Y. Ma, and J. Zhao, “Neural-networks-based prescribed
tracking for nonaffine switched nonlinear time-delay systems,” IEEE
Transactions on Cybernetics, vol. 52, no. 7, pp. 6579–6590, 2022.

[17] J. Zhao and D. J. Hill, “On stability, L2-gain and H∞ control for
switched systems,” Automatica, vol. 44, pp. 1220–1232, 2008.

[18] Z. Li, L. Long, and J. Zhao, “Linear output-feedback-based semi-global
stabilization for switched nonlinear time-delay systems,” Journal of the
Franklin Institute, vol. 356, no. 13, pp. 7224–7245, 2019.

[19] D. Cui, C. K. Ahn, and Z. Xiang, “Fault-tolerant fuzzy observer-
based fixed-time tracking control for nonlinear switched systems,” IEEE
Transactions on Fuzzy Systems, vol. 31, no. 12, pp. 4410–4420, 2023.

[20] D. Liberzon, Switching in Systems and Control, Boston, MA, USA:
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