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Abstract—This article studies the 3-D dynamic rendezvous
control problem for coordinated heterogeneous marine vehi-
cles, including an uncrewed underwater vehicle (UUV) and an
autonomous surface vehicle (ASV). An observer-based safety-
preserving rendezvous control approach is proposed to robustly
stabilize the rendezvous errors under the port-Hamiltonian (PH)
framework. First, an interconnection and damping assignment
passivity-based control (IDA-PBC) method is adopted to provide
a basic stabilizing control framework. In this problem, both
vehicles are faced with hydrodynamic model uncertainties and
unknown external disturbances. Then, to preserve the rendezvous
safety under uncertain dynamics, the prescribed performance
control (PPC) transformation is implemented for the ascending
motion to get the equivalent approaching-constrained PH system.
The intuitive design procedure provided by the IDA-PBC method,
along with the collision-free rendezvous safety guaranteed by
the auxiliary PPC technique, reduces the controller design
complexity while providing a smooth rendezvous trajectory.
Besides, a structure-keeping uncertainty observer algorithm is
designed and incorporated to simultaneously handle model uncer-
tainties and environmental disturbances without destroying the
interconnection structure. Under the proposed approach, the
UUV-ASV rendezvous errors can be effectively stabilized with
rigorous closed-loop stability analysis. Finally, both simulations
and comparative experiments are conducted to demonstrate the
effectiveness and advantages of the proposed approach.
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I. INTRODUCTION

W ITH the rapid advancement of ocean exploration,
autonomous marine vehicles (AMVs) capable of pro-

viding efficient and low-cost exploration services have gained
a surge in marine applications. Over the last two decades,
many researchers attempted to investigate various control
strategies for single AMV control problems that involve
dynamic positioning [1], [2], [3], [4], path following [5],
[6], [7], [8], [9], and trajectory tracking [10], [11], [12],
[13]. However, for tasks that require cross-domain cooperation
and long-term offshore operations, such as offshore maritime
search [14], maritime emergency disaster relief [15], and
multidimensional ocean observations [16], AMVs usually need
to execute tasks in a coordinated manner. A representative
case is the coordinated surface-underwater search for Malaysia
Airlines MH-370. Since different types of AMVs have distinct
operational capabilities, the coordination of heterogeneous
AMVs can significantly improve operational efficiency and
expand the operating range.

Compared with homogeneous systems [17], [18], [19],
some control strategies have been proposed recently for the
coordination problems of heterogeneous systems. Except for
some model-free control schemes that do not require explicit
system dynamics [20], [21], [22], [23], existing model-based
methods can be generally classified into the optimization-
based approach and the nonoptimization approach. A typical
optimization-based control method is model predictive control
(MPC), which is widely applied in heterogeneous systems.
In [24], a disturbance compensating model predictive con-
trol (DMPC) method was proposed. By sequentially solving
optimal control and disturbance compensation problems, the
designed controller can achieve robust cooperation for het-
erogeneous AMVs. In [25], the cooperation problem of
autonomous aerial vehicles (AAVs) and autonomous ground
vehicles (AGVs) in the presence of external disturbances and
denial of service attacks was studied based on DMPC. In [14],
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a safety-preserving Lyapunov-based MPC framework was pre-
sented to accomplish coordinated rendezvous of an uncrewed
underwater vehicle (UUV) and an autonomous surface vehicle
(ASV) subject to external disturbances. In [26], a distributed
event-triggered adaptive MPC method was proposed for the
formation control of the AAV-ASV. With the optimization-
enabled capabilities, the above methods provide promising
results for heterogeneous vehicles. However, practical model
uncertainty problems cannot be handled due to the high
dependence on accurate modeling.

Unlike the optimization-based control method, the
nonoptimization-based method can directly handle model
uncertainties and disturbances with various techniques in
a computationally tractable way. For instance, in [27],
a decentralized formation control scheme based on the
sliding mode technique and extended state observers was
presented for the heterogeneous UUV-ASV system under
external disturbances and unmodeled dynamics. In [28]
and [29], observer-based fault-tolerant fixed-time control
methods were proposed for multiple AAVs formation under
disturbances and uncertainties with and without the prescribed
performance control (PPC) technique, respectively. Although
the above methods achieve satisfactory control performance,
intervehicle safety (e.g., collision avoidance) was not
considered, especially when faced with unknown disturbances
and model uncertainties. In addition to the intervehicle
safety, the engineering applicability is another problem that
needs to be considered. In practical engineering applications,
algorithms with concise forms and clear interpretability
are often preferred since they are more engineer-friendly.
However, most of the advanced nonlinear control designs, for
example, backstepping, sliding mode, and so on, are quite
complicated and not intuitive, including the aforementioned
methods [27], [28], [29]. One reason is that the design
procedure of those methods is more like doing signal
processing, which can be called “signal-based” methods and
does not directly reflect the physical features of the system.

Different from “signal-based” methods, port-Hamiltonian
(PH) theory provides a unified framework to describe and
analyze physical–mechanical systems from the perspective
of “energy flow” [30], [31]. By establishing the conceptual
relationship between energy conservation and dissipation, the
PH framework enables controller design with clear physical
interpretations. Among its methodologies, one of the most
representative is the interconnection and damping assignment
passivity-based control (IDA-PBC) [32], which has become
a cornerstone in PH-based control design. In recent years,
PH-based methods have been applied to autonomous marine
vehicles (AMVs). For example, in [33], PH theory was used
for dynamic positioning of ships, while [34] developed a
PH-based algorithm extending L2 disturbance attenuation for
UUVs. More recently, a fixed-time tracking control strategy
under external disturbances was proposed in [35] for UUVs. In
addition to marine vehicles, PH-based control techniques have
been extended to a wide spectrum of mechanical systems, such
as robotic arms actuated by artificial muscles [36], autonomous
ground vehicles [37], and advanced flight control systems
[38]. Following the energy-shaping idea, pioneering works

have combined IDA-PBC with integral actions to address
unknown disturbances [39], [40], and an adaptive IDA-PBC
approach was proposed in [41] to handle constant disturbances
and unmodeled dynamics in UUV tracking. However, the
controllers in [34], [35], [36], [37], [38], [39], [40], and [41]
cannot simultaneously cope with time-varying disturbances
and unmodeled dynamics, and most of them mainly focus
on achieving motion behaviors without explicitly considering
safety constraints. In contrast, when dealing with multiple
AMVs’ cooperation under uncertain dynamics, it is critical
to account for both intervehicle safety and robustness against
disturbances.

Motivated by the above discussions, this article aims to
develop a safety-preserving coordinated rendezvous control
approach for UUV-ASV systems to achieve the dynamic
3-D rendezvous in the presence of unknown disturbances
and unmodeled dynamics. From an energy-flow perspective,
an IDA-PBC-based rendezvous control scheme is proposed
under the PH framework. Based on the PH structure, a novel
structure-keeping uncertainty observer (SKUOB) technique
is developed to simultaneously handle external disturbances
and unmodeled dynamics. By further incorporating the PPC
transformation into the IDA-PBC framework, the designed
observer-based structure-keeping interconnection and damping
assignment (OSK-IDA) method can directly preserve the inter-
vehicle safety by achieving a collision-free rendezvous. The
main contributions of this article are summarized as follows.

1) In contrast to the “signal-based” design methods [27],
[29], which require tricky transformation or compli-
cated calculations for intermediate system signals, the
proposed IDA-PBC controller is derived by solving
energy-reshaped matching equations, making the design
more intuitive. The unique dissipation property of the
PH system enhances the physical interpretation of the
design procedure.

2) The integration of the PPC technique within the IDA-
PBC framework serves as a key auxiliary design that
facilitates the transformation of the original constrained
control problem into an equivalent unconstrained prob-
lem. Unlike other IDA-PBC approaches [41], [42],
which cannot handle potential intervehicle collision, the
proposed OSK-IDA controller can ensure the rendezvous
safety by utilizing the PPC-transformed state as the PH
state.

3) Compared with the IDA-PBC methods in [43], [44],
and [45], where the controllers cannot handle model
uncertainties and the method in [41], where the con-
troller can only address constant disturbances and
model uncertainties within the PH framework, the
proposed SKUOB-aided method can effectively han-
dle time-varying disturbances and unmodeled dynamics
simultaneously without destroying the intrinsic intercon-
nection structure presented by the PH system.

II. PROBLEM FORMULATION

In this section, the adopted models of the heterogeneous
marine vehicles are introduced first, and then the control
objective and preliminaries are briefly specified. For the sake
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of subsequent expressions, the subscripts “u” and “a” represent
the corresponding variables of the UUV and ASV, respectively.

A. UUV Modeling

According to the mathematical models presented in [46],
the UUV model can be expressed as follows:

η̇u = Ju
�
ηu

�
νu

Muν̇u = −Cuνu − Duνu − g
�
ηu

�
+ τu + du (1)

where ηu = [xu, yu, zu, φu, θu, ψu]> represents the position
vector in the inertial frame. νu = [uu, vu,wu, pu, qu, ru]> rep-
resents the velocity vector in the body-fixed frame. φu, θu,
and ψu are the rotational angles of the UUV in roll, pitch,
and yaw directions. Ju = diag{Ju1, Ju2} ∈ R

6×6 denotes
the rotation matrix between the earth frame and the body-
fixed frame. Du = diag{X|u||uu| + Xu,Y|v||vu| + Yv,Z|w||wu| +
Zw,K|p||pu| + Kp,M|q||qu| + Mq,N|r||ru| + Nr} is the symmet-
ric damping matrix, composed of both linear and nonlinear
damping components, where X|u|, Xu, Y|v|, Yv, Z|w|, Zw, K|p|,
Kp, M|q|, Mq, N|r|, and Nr are the hydrodynamic coefficients.
τu ∈ R

6×1 and du ∈ R
6×1 are the force input and the unknown

external disturbance, respectively. g(ηu) = [(G − B)sθu,−(G −
B)sφucθu,−(G − B)cφucθu, ybBcφucθu − zbBsφucθu,−zbBsθu −

xbBcφucθu, xbBsφucθu + ybBsθu]> is the resorting force, where
signs c(·), s(·), and t(·) denote cos(·), sin(·), and tan(·),
respectively. G = mg0 and B = bg0 are the gravity and
buoyancy of the UUV, respectively. b and g0 are the buoyancy
constant and the gravitational constant. xb, yb, and zb are
the position coordinates of the buoyant center relative to
the center of gravity in the body-fixed system. The matrix
Mu = diag{m−Xu̇,m−Yv̇,m−Zẇ, Ix−Kṗ, Iy−Mq̇, Iz−Nṙ} ∈ R

6×6

is the inertia matrix, where m is the UUV mass. Ix, Iy, and
Iz are the moments of inertia. Xu̇, Yv̇, Zẇ, Kṗ, Mq̇, and Nṙ are
added mass coefficients. Cu ∈ R

6×6 is the Coriolis–centripetal
matrix consisting of the rigid-body Coriolis matrix CRB and
the hydrodynamic added Coriolis matrix CA with specific
expressions given below:

CRB =

�
03×3 −mΩ (νT̄ )

−mΩ (νT̄ ) −Ω (I0νR)

�
,CA =

�
03×3 Ω

�
ζT̄
�

Ω
�
ζT̄
�
Ω
�
ζR
��

where νT̄ = [uu, vu,wu]> and νR = [pu, qu, ru]> denote
the translational and rotational velocities, respectively. In
the above definitions, ζ T̄ = [Xu̇uu,Yv̇vu,Zẇwu]>, ζR =

[Kṗ pu,Mq̇qu,Nṙru]>, and I0 = diag(Ix, Iy, Iz). The cross-
product operator Ω(·) is defined as follows:

Ω (v̄) =

24 0 −v̄ (3) v̄ (2)
v̄ (3) 0 −v̄ (1)
−v̄ (2) v̄ (1) 0

35
where v̄ ∈ R3×1 can be any 3-D vector.

TABLE I
MODEL PARAMETERS

Remark 1: The considered UUV is neutrally buoyant.
Therefore, it satisfies xb = yb = 0 and G = B. Fur-
thermore, the resorting force vector g(ηu) is equivalent to
J>(ηu)∇ηu

Hu0 referring to [46] and can be rewritten as g(ηu) =

[0, 0, 0, zbBsφucθu, zbBsθu, 0]>.

B. ASV Modeling

Considering the classical 3-DOF ASV model as fol-
lows [46]:

η̇a = Ja
�
ηa

�
νa

Maν̇a = −Caνa − Daνa + τa + da (3)

where ηa = [xa, ya, ψa]> and νa = [ua, va, ra]> denote the
position and the velocity vectors in the inertial and body-
fixed frames, respectively. ψa is the yaw angle. τa ∈ R3×1

and da ∈ R
3×1 are the control input and unknown external

disturbance, respectively. Ja is the rotation matrix with its
internal elements as Ja(1,1) = cψa, Ja(1,2) = −sψa, Ja(2,1) =

sψa, Ja(2,2) = cψa, and Ja(3,3) = 1. In the above equations,
Ma = diag{m11,m22,m33} is the inertia matrix, where m11,
m22, and m33 denote mass components in body-fixed frame.
Ca ∈ R

3×3 is the Coriolis–centripetal matrix with its nonzero
elements as Ca(1,3) = −m22va, Ca(2,3) = m11ua, Ca(3,1) = m22va,
and Ca(3,2) = −m11ua. The hydrodynamic damping matrix
Da = diag{d11, d22, d33}, where d11, d22, and d33 are the hydro-
dynamic parameters including the angular quadratic damping
factor and the angular linear damping factor. All parameters
mentioned above are listed in Table I.

To facilitate discussions, we make the following assump-
tions in this article.

Assumption 1 ([47], [48]): In practical scenarios, the
unknown external disturbances du and da are time-varying.
Suppose that there exist positive constants dumax and damax such
that ‖ du ‖∞ ≤ dumax and ‖ da ‖∞ ≤ damax. Besides, the first
derivatives of du and da are bounded by ‖ ḋi ‖∞ ≤ d̄i, i ∈= u, a,
where d̄i are positive constants.

Ju1 =

24cθucψu −cφusψu + sφusθucψu sφusψu + cφusθucψu

cθusψu cφucψu + sφusθusψu −sφusψu + cφusθusψu

−sθu sφucθu cφucθu

35 , Ju2 =

241 sφutθu cφutθu

0 cφu −sφu

0 sφu
cθu

cφu
cθu

35 (2)
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Remark 2: For marine environments, disturbances mainly
arise from currents, waves, and winds. Currents are usually
low-frequency [46], while the inertia, viscosity, and finite
energy of the fluid limit the rate of change of wind and
wave loads [49], [50]. Specifically, wind loads, determined by
wind speed and a trigonometric function of the attack angle,
are also typically low frequency, and wave effects are often
modeled as second-order, input-to-state stable systems [51]. As
standard models treat these forces as continuous with bounded
variation rates, the above assumption is both physically and
mathematically reasonable in marine control applications.

C. Port-Hamiltonian Theory

The PH theory enables describing physical systems in port-
based network models with respect to energy flow, providing
an insightful and intuitive analysis of mechanical-physical
systems, especially for AMVs. According to [52], a system
can be called a PH system if it satisfies the following form:

ẋ = [L (x) − F (x)]∇H (x) + T (x) u
y = T> (x)∇H (x) (4)

where x and y are the state vector and the output vector,
respectively. The skew-symmetric interconnection matrix L
and the symmetric damping matrix F represent the internal
energy exchange and energy dissipation of the PH system,
respectively. T is the input matrix. The Hamiltonian function
H(x) denotes the total stored energy of the system.

By following the PH theory, the original Euler–Lagrange
UUV model (1) can be reshaped in the PH form as follows:�
η̇u
ṗu

�
=

�
06×6 Ju

−J>u −Cu − Du

� �
∇ηu

Hu0
∇pu

Hu0

�
+

�
0
I

�
τu +

�
0
du

�
(5)

where I ∈ R6×6 is the identity matrix and pu = Muνu denotes
the momentum vector of the UUV. Hu0 is the Hamiltonian
(energy) function, which has the form of

Hu0 =
1
2

p>u M−1
u pu + V

�
ηu

�
(6)

where V(ηu) = Gs(θu)xb − Gc(θu)yb − Gc(θu)c(φu)zb. For the
ASV, selecting the Hamiltonian function Ha0 as the kinetic
energy [53]

Ha0 =
1
2

p>a M−1
a pa (7)

then the original Euler–Lagrange ASV model (6) can be also
reshaped in the PH form�
η̇a
ṗa

�
=

�
03×3 Ja

−J>a −Ca − Da

� �
∇ηa

Ha0
∇pa

Ha0

�
+

�
0
I

�
τa +

�
0
da

�
(8)

where pa = Maνa denotes the momentum vector of the ASV
and I ∈ R3×3 is the identity matrix.

D. Prescribed Performance Control

The PPC technique ensures that the controlled system
can achieve the prescribed performance under the dynamic
response. This technique is widely applied in scenarios

Fig. 1. Scenario illustration of the surface-underwater dynamic rendezvous.

requiring high precision. Here, a function can be called the pre-
scribed performance function if it satisfies the definition [54]

ρ (t) =
n
(ρ, t)

ˇ̌
ρ > 0, ρ̇ < 0, lim

t→∞
ρ > 0

o
: R+ → R+.

Selecting a prescribed performance function in the form of
ρ(t) = (ρ0 − ρ∞)e−β0t + ρ∞, and it can be observed that the
selected prescribed performance function is decreasing expo-
nentially. ρ0 and ρ∞ are nonnegative parameters, representing
the initial and steady-state values, respectively. β0 is the
minimum convergence rate. Besides, the initial conditions also
need to be satisfied, that is, ρ0 > ρ∞,−αρ(0) < x(0) < βρ(0),
where α and β are the designed constants, which impose the
performance bounds on the output of the variable x requiring
to be confined.

E. Control Objective

Consider a practical scenario: after long-term oceanic explo-
ration, a UUV in operation needs to be recharged while
preserving its predefined mission as much as possible. To
accomplish this task, an ASV is designated to autonomously
follow the UUV and eventually rendezvous with it, serving as
a mobile charging platform. During the dynamic rendezvous
process, the ASV should gradually approach the moving UUV
and then remain quasistationary relative to it, as illustrated in
Fig. 1. For safety considerations, the rendezvous trajectory
must be smooth and constrained to avoid potential collisions
between the two vehicles. Accordingly, the control objective
can be decomposed into the following components:

1) Rendezvous and Tracking Objectives: The UUV moves
along a preset path. This tracking task can be expressed as
‖ η̃u ‖∞≤ c1, where η̃u = ηu − ηud is the tracking error vector
of the UUV. ηud denotes the desired trajectory position. c1 is
a small positive constant that bounds the tracking error. The
ASV is required to follow the UUV. It can be described that
the relative position error between the UUV and ASV in the
horizontal plane needs to be converged over time, such that
‖ η̃a ‖∞≤ c2, where the ASV tracking error η̃a is defined as
η̃a = ηa − Bηu, and B ∈ R3×6 is the projection matrix with its
nonzero elements as B(1,1) = B(2,2) = B(3,6) = 1. The threshold
c2 serves as an admissible upper bound on the rendezvous error
η̃a and can be selected based on the practical requirements of
the rendezvous task. A smaller threshold corresponds to a more
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Fig. 2. Coordinated rendezvous control diagram of UUV-ASV systems.

stringent accuracy demand, whereas a larger value permits a
more relaxed tolerance in rendezvous precision.

2) Ascending Objective: Since the investigated problem
is a 3-D rendezvous, the UUV must gradually ascend to
an admissible depth for subsequent docking. Therefore, the
condition of the UUV is required as zu → zud, where zud

denotes the admissible depth.
3) Safety Objective: Potential collision issues during the

rendezvous between the UUV and ASV must be considered.
The ascending depth of the UUV should not exceed the surface
while maintaining a reasonable distance from it to enable the
working of docking devices. Therefore, the UUV ascending
motion should be confined and can be expressed as zu(t) >
c3, t → ∞, where c3 is a preset constant greater than or equal
to zero, representing the safety margin.

III. CONTROLLER DESIGN

This section is divided into four parts. First, the safety-
preserving rendezvous controllers for the UUV and ASV
are designed using the IDA-PBC method assisted by the
PPC technique. Second, a novel structure-keeping lumped
uncertainty observer is developed to handle time-varying exter-
nal disturbances and model uncertainties simultaneously. The
rendezvous control scheme diagram is depicted in Fig. 2.

A. UUV Controller Design

With the consideration of rendezvous safety, we use the
PPC technique to confine the UUV’s ascending motion. To
incorporate the PPC technique into the controller design,
it is essential to transform the original heave state into an
equivalent form [54]. The transformed equations are given as
follows:

Ezu = zu (t) − zud = ρ (t) S (ε) , S (ε) =
βeε − αe−ε

eε + e−ε

where Ezu is the vertical rendezvous error of the UUV and
ε is the equivalent state related to the vertical rendezvous
error. S (ε) possesses properties of smooth and monotonically
decreasing. Through the inverse transformation of the above
equations, ε is obtained as follows:

ε (t) = S −1
�

Ezu (t)
ρ (t)

�
=

1
2

ln
S + α

β−S

from where we can see that if ε is bounded with the designed
controller, the ascending error Ezu can achieve the prescribed
performance. In this article, the prescribed performance is set
as a collision-free ascending trajectory. The derivative of ε can
be calculated as follows:

ε̇ =
1

2ρ

�
1

S + α
−

1
S − β

��
Ėzu −

Ezu ρ̇

ρ

�
. (9)

With the above state transformation between the variables
ε and zu, replacing żu with ε̇ in terms of the equivalent
expression (9) into the original (1) yields

δ̇u = J̄uνu +Ψ (10)

where Ψ = [0, 0,−γS ρ̇, 0, 0, 0]>, and J̄u =

diag([1, 1, γ, 1, 1, 1])Ju. Here, γ = 1/2ρ(1/(S +α)−1/(S −β)).
The new state δu = [xu, yu, ε, φu, θu, ψu]> denotes the position
vector of UUV rewritten based on the PPC technique, and it
will be used in the IDA-PBC method. Following the design
framework of the IDA-PBC method under the PH theory,
the desired closed-loop PH structure can be constructed as
follows: " ˙̃δu

˙̃pu

#
=

�
Wu11 Wu12
−W>

u12 Wu22

�
∇Hu (11)

where δ̃u = δu − δud and p̃u = pu − pud are position and
momentum error vectors, respectively. Here, δud is the trans-
formed desired trajectory with respect to ηud and pud is the
desired momentum which will be designed later. Wu11 and Wu22
are designed symmetric matrices, which are negative definite
and symmetric. Wu12 is an interconnection shaping matrix and
needs to be designed later. Hu is the desired Hamiltonian func-
tion, and it can be designed as Hu = 1/2δ̃>u Quδ̃u+1/2 p̃>u R−1

u p̃u,
where Qu and Ru are positive definite energy shaping matrices.
By taking the derivative of δ̃u and substituting (10), one can
get

˙̃δu = δ̇u − δ̇ud = J̄uνu +Ψ − δ̇ud. (12)

To reshape the system with the desired structure, the kine-
matic matching condition needs to be met first, that is, (12)
needs to be matched to the first row of (11) as follows:

˙̃δu = J̄uνu +Ψ − δ̇ud = Wu11Quδ̃u + Wu12R−1
u p̃u. (13)

Since νu = M−1
u pu, to preserve the interconnection property

of the PH system, Wu12 is designed as follows:

Wu12 = J̄u MuRu. (14)

Then, the desired momentum vector is designed as follows:

pud = Mu J̄−1
u

�
Wu11Quδ̃u −Ψ+ δ̇ud

�
. (15)

Next, the kinetic matching condition needs to be met in a
similar way to the kinematics. Taking the derivative of the
momentum error vector, one can get

˙̃pu = ṗu − ṗud. (16)

Substituting (1) into (16), and matching it to the second row
of (11), one can get

− Cuνu − Duνu − g + τu + du − ṗud
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= −W>
u12Quδ̃u + Wu22R−1

u p̃u. (17)

To get the basic IDA-PBC control laws, we first assume
that there is no external disturbance in this part. Then, the
following UUV tracking control law can be obtained by
solving the matching equation:

τu = −W>
u12Quδ̃u + Wu22R−1

u p̃u + ṗud

+ Cuνu + Duνu + g. (18)

B. ASV Controller Design

The design procedure for the ASV is similar to the UUV.
First, the desired closed-loop PH structure of the ASV is
constructed as follows:�

˙̃ηa
˙̃pa

�
=

�
Wa11 Wa12
−W>

a12 Wa22

�
∇Ha (19)

where Wa11 and Wa22 are designed negative definite and
symmetric matrices. The interconnection shaping matrix Wa12
will be defined later. ∇Ha includes the partial derivatives
of both the position and momentum of the ASV. Ha is the
desired Hamiltonian function, and it is designed as Ha =

1/2η̃>a Qaη̃a + 1/2 p̃>a R−1
a p̃a, where Qa and Ra are positive

definite energy shaping matrices.
For the kinematics of the ASV, its derivative in the form of

error terms can be written as follows:

˙̃ηa = η̇a − BJuνu = Jaνa − BJuνu. (20)

To reshape the system with the desired structure, the kine-
matic matching equation is supposed to hold, that is,

˙̃ηa = Jaνa − BJuνu = Wa11Qaη̃a + Wa12R−1
a p̃a (21)

where the matrix Wa12 is designed as follows:

Wa12 = Ja MaRa. (22)

Since νa = M−1
a pa, the desired virtual momentum vector

pad can be designed as follows:

pad = Ma J−1
a

�
Wa11Qaη̃a + BJuνu

�
. (23)

For the kinetics of the ASV, taking the derivative of error
vectors and matching it with the desired PH structure (19),
one can get the following matching equation:

˙̃pa = ṗa − ṗad = −W>
a12Qaη̃a + Wa22R−1

a p̃a. (24)

By substituting the original dynamic equations into the
matching equation, the following control law can be obtained
by solving the matching equation:

τa = −W>
a12Qaη̃a + Wa22R−1

a p̃a + ṗad

+ Caνa + Daνa. (25)

C. Observer-Based Structure-Keeping Control Design

In previous controller designs, all the control laws were
designed without considering unmodeled dynamics or external
disturbances. In practice, environmental disturbances widely
exist and can hardly be measured. For marine vehicles,
involved disturbances such as winds, waves, and ocean
currents usually exhibit time-varying and low-frequency char-
acteristics and directly affect vehicle maneuvering. In addition
to environmental disturbances, model uncertainty is another
factor that directly affects control performance. Since UUV
and ASV models exhibit high nonlinearities and system iden-
tifications can be inaccurate, model uncertainties are inevitable
in marine vehicle modeling and may lead to severe control
deterioration. Therefore, it is necessary to handle model uncer-
tainties and time-varying external disturbances simultaneously
to improve the system’s robustness. In this section, an inter-
connection structure-keeping uncertainty observing method is
developed to estimate disturbances and model uncertainties
simultaneously under the PH framework.

In practical engineering, due to the limited modeling
accuracy, model uncertainties mainly stem from inaccurate
hydrodynamic parameters. Since a group of inaccurate nom-
inal parameters can be easily obtained by conducting basic
experiments, the hydrodynamic damping matrix Di, i ∈ N ,
can be decomposed into two parts

Di = Di0 + Diu (26)

where N = {i|i = u, a} is the vehicle node set. Di0 and
Diu are nominal and unmodeled parts, respectively. With this
decomposition, the dynamic equations of the UUV and the
ASV can be rewritten as follows:

Muν̇u = − (Cu + Du0) νu − gu + τu + du − Duuνu (27)
Maν̇a = − (Ca + Da0) νa + τa + da − Dauνa. (28)

To consider all kinds of uncertainties, define the lumped
uncertainties as Ui = di−Diuνi. Then, an intermediate variable
αi is defined as follows:

αi = Ui − Ki Miνi (29)

where Ki is a positive-definite gain matrix. Take the time
derivative of αi, one can get

α̇u = U̇u − Ku Muν̇u

= U̇u − Ku
�
− (Cu + Du0) νu − gu + τu + Uu

�
α̇a = U̇a − Ka Maν̇a

= U̇a − Ka (− (Ca + Da0) νa + τa + Ua) .

To proceed with the observer design, we first design the
estimation laws for the intermediate variable αi as follows:

˙̂αu = −Ku
˚
− (Cu + Du0) νu − gu + τu + Ûu − K−1

u R−1
u p̃u

	
(30)

˙̂αa = −Ka
˚
− (Ca + Da0) νa + τa + Ûa − K−1

a R−1
a p̃a

	
(31)

then the lumped uncertainty observer is designed as follows:

Ûi = α̂i + Ki Miνi. (32)
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With the designed observer, we can design the observer-
aided robust control laws based on the IDA-PBC controllers
(18) and (25) designed in Section III-B as follows:

τur = −W>
u12Quδ̃u + Wu22R−1

u p̃u + ṗud

+ Cuνu + Du0νu + g (δu) − Ûu (33)

τar = −W>
a12Qaη̃a + Wa22R−1

a p̃a + ṗad

+ Caνa + Da0νa − Ûu. (34)

It should be noted that the designed robust control laws can
ensure the closed-loop system keeps the desired interconnec-
tion structure. This can be seen by taking the derivative of
observation Ûi

˙̂Ui = ˙̂αi + Ki Miν̇i. (35)

By substituting (30) and (31) into (32), one can get the
following result:

˙̂Ui = KiŨi + R−1
i p̃i (36)

where Ũi = Ui − Ûi is the observation error. Here, the deriva-
tive of observation not only contains the observation error,
but also involves the momentum error, making the closed-
loop an interconnection structure. To facilitate the following
discussion, we define the Lyapunov candidate function for
observers as Voi = Ũ>i KdiŨi, i ∈ N , where Kdi is the gain
matrix. More details of the observer-based controller analysis
will be given in Section IV.

IV. MAIN RESULTS

In this section, the overall closed-loop system stability is
comprehensively analyzed.

Theorem 1: Suppose Assumption 1 holds. For heteroge-
neous marine vehicles (1) and (3) with Hamiltonian functions
as (6) and (7), if the desired momentum are designed as (15)
and (23), interconnection shaping matrices Wu12 and Wa12 are
selected as (14) and (22), damping shaping matrices Wu11,
Wu22, Wa11, and Wa22 are selected symmetric and negative
definite, and gain matrices Qi, Ri, Ki, and Kdi, i ∈ N ,
are selected symmetric and positive definite, coefficients σu

and σa are selected appropriately such that Vu(0) − bu/c̄u >
0, σuλmax(Kdu) − λmin(Ku) < 0, Va(0) − ba/c̄a > 0, and
σaλmax(Kda)−λmin(Ka) < 0, then the overall closed-loop UUV-
ASV rendezvous system is input-to-state stable (ISS) and the
collision-free rendezvous is guaranteed under the designed
OSK-IDA control laws (33) and (34).

Proof: According to the PH theory and the reshaping
measures designed in Section III, the closed-loop systems of
the UUV and ASV can be expressed as the following PH
forms along the designed control laws (33) and (34)� ˙̃δu

˙̃pu

�
=

�
Wu11 Wu12
−W>

u12 Wu22

�
∇Hu +

�
0

Ũu

�
�

˙̃ηa
˙̃pa

�
=

�
Wa11 Wa12
−W>

a12 Wa22

�
∇Ha +

�
0

Ũa

�
. (37)

In (37), the Hamiltonian functions Hu and Ha are original
energy without uncertainties. To analyze the overall stability

with considerations of lumped uncertainties, we define the total
Hamiltonian function as follows:

Hid = Hi +
1
2

Ũ>i KdiŨi, i ∈ N (38)

where Hid is the reshaped (desired) Hamiltonian function
for the perturbed marine vehicle and Ũ>i KdiŨi represents
the potential energy induced by observers. With the incor-
porated observers, define the augmented system states as
Xu = [δ̃u, p̃u, Ũu]> and Xa = [η̃a, p̃a, Ũa]>. By using the
dissipation property, the augmented closed-loop PH systems
can thus be obtained as follows:26664

˙̃δu

˙̃pu

˙̃Uu

37775 =

24 Wu11 Wu12 0
−W>

u12 Wu22 I
0 −I −KuK−1

du

35∇Hud +

24 0
0

U̇u

35
= (Lu − Fu)∇Hud + su2664

˙̃ηa

˙̃pa

˙̃Ua

3775 =

24 Wa11 Wa12 0
−W>

a12 Wa22 I
0 −I −KaK−1

da

35∇Had +

24 0
0

U̇a

35
= (La − Fa)∇Had + sa (39)

where Li and Fi are reshaped interconnection and damping
matrices that preserve the interconnection and dissipation
structure. si represents the remaining right-hand side term.

For the closed-loop UUV and ASV systems, select the
Hamiltonian function Hid as the Lyapunov candidate function,
that is, Vi = Hid. Then, the overall Lyapunov candidate func-
tion for the UUV-ASV rendezvous system can be expressed
as follows:

V =
X
i∈N

Vi (40)

where Vi is the Lyapunov function of each subsystem, that is,
UUV or ASV.

Take the stability analysis of the UUV as an example.
Taking the derivative of Vu and substituting (39), one can get
the following result:

dVu

dt
=
∂>Hud

∂Xu

dXu

dt
=
∂>Hud

∂Xu

�
(Lu − Fu)

∂Hud

∂Xu
+ su

�
.

Since the interconnection matrix Lu is skew-symmetric and
the damping matrix Fu is symmetric and positive definite, the
dissipation property is preserved, and the above equation can
be further simplified as follows:

dVu

dt
= δ̃

>

u QuWu11Quδ̃u + p̃>u R−1
u Wu22R−1

u p̃u

+ Ũ>u KduU̇u − Ũ>u KduKuŨu

≤ δ̃
>

u QuWu11Quδ̃u + p̃>u R−1
u Wu22R−1

u p̃u

− Ũ>u KduKuŨu + σuŨ>u KduKduŨu

+
1

4σu
U̇>u U̇u.
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Fig. 3. Coordinated dynamic rendezvous trajectories under different methods. (a) Rendezvous results under the proposed method. (b) Rendezvous results
under the method in [41]. (c) Rendezvous results under the method in [24].

Based on the properties of the generalized Rayleigh quo-
tient, the aforementioned inequality is simplified as follows:

dVu

dt
≤ λmax

�
Wu11Qu

�
δ̃
>

u Quδ̃u +
1

4σu
U̇>u U̇u

+ (σuλmax (Kdu) − λmin (Ku)) Ũ>u KduŨu

+ λmax
�
Wu22R−1

u

�
p̃>u R−1

u p̃u

≤ −c̄uVu + bu.

By further integrating the inequality over the interval [0, t],
one can obtain

0 ≤ Vu (t) ≤
bu

c̄u
+

�
Vu (0) −

bu

c̄u

�
e−c̄ut (41)

where c̄u = −max{λmax(Wu11Qu), λmax(Wu22R−1
u ), and

σuλmax(Kdu) − λmin(Ku)}, bu = 1/4σu||U̇u||∞.
Here, σu can be any appropriate positive constant and can

be adjusted as needed. If matrices Wu11, Wu22, Qu, R−1
u , Ku,

and Kdu are selected appropriately such that Vu(0) − bu/c̄u > 0
and σuλmax(Kdu)−λmin(Ku) < 0, and then the UUV subsystem
can be ISS according to the definition given in [55].

The stability analysis of the ASV subsystem is similar to the
above contents and is thus omitted here. By further taking the
derivative of the overall Lyapunov candidate function V and
substituting the derivative analyses of UUV and ASV into the
derivative function V̇ , one can obtain that

V̇ ≤ −c̄uVu − c̄aVa + bu + ba ≤ −c̄oV + bo (42)

where c̄o = min {c̄a, c̄u} and bo = bu + ba. According to the
definition given in [55], (42) implies that the overall UUV-
ASV rendezvous system is ISS. It should be noted that since
the transformed ascending depth is used in the closed-loop
stability analysis, the ISS property directly implies that the
original collision-free rendezvous trajectory is guaranteed.

This completes the proof. �

V. SIMULATION RESULTS

In this section, simulation experiments of the UUV-ASV
rendezvous scenario are conducted to demonstrate the effec-
tiveness of the proposed method.

Fig. 4. Rendezvous results in different perspectives. (a) Rendezvous trajectory
in the XY plane. (b) Rendezvous trajectory in the XZ plane.

Fig. 5. Illustration of collision-free ascending for vertical rendezvous.

A. Simulation Setup

Suppose that the UUV has a parameterized predefined
trajectory given as xud = 0.025t, yud = 1.5 sin(0.05t),
ψud = arctan(ẏud/ẋud), and zud = 0.1. The initial positions
and velocities of two vehicles are set as ηu0 = [−0.5,−0.2,
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Fig. 6. Rendezvous and tracking errors. (a) Tracking errors of the UUV (position). (b) Tracking errors of the UUV (attitude). (c) Rendezvous errors between
the UUV and the ASV.

2, 0, 0, π/4]>, νu0 = [0, 0, 0, 0, 0, 0]>, ηa0 = [−0.1, 0.5, 0]>,
and νa0 = [0, 0, 0]>. The performance function param-
eters are selected as α = 0, β = 1, ρ0 = 8,
ρ∞ = 0.2, and β0 = 0.05. The damping reshaping matri-
ces are designed as Wu11 = −diag([1, 1.25, 0.55, 8, 8, 7.5]),
Wu22 = −diag([1, 5, 10, 5, 5, 15]), Wa11 = −diag([1, 1, 2]),
and Wa22 = −diag([0.8, 0.5, 0.8]). The gain matrices related
to the lumped uncertainty observers are selected as Ku =

diag([5, 5, 5, 5, 5, 5]) and Ka = diag([10, 10, 10]). The gain
matrices for the desired Hamiltonian functions are config-
ured as Qu = diag([0.2, 0.07, 0.05, 0.05, 0.05, 0.05]), Ru =

diag([1, 0.8, 2, 0.2, 0.2, 0.2]), Kdu = diag([1, 1, 1, 1, 1, 1]), Qa =

diag([0.8, 0.5, 2]), Ra = diag([0.1, 0.1, 0.5]), and Kda =

diag([1, 1, 1]). The nominal parts in the hydrodynamics
matrices of the UUV and the ASV are set as Du0 =

diag{246.3|uu| + 28.4, 508.8|vu| + 37.3, 267.6|wu|, 100.1|pu| +
2.5, 58.4|qu| + 4.4, 75.4|ru| + 3} and Da0 = diag{0.5|ua| +
6, 2.5|va| + 12, 0.025|ra| + 0.25}. The unmodeled parts Duu

and Dau involve twelve basis matrices Duu j , ( j = 1, . . . , 12)
and six basis matrices Dauk , (k = 1, . . . , 6), respectively.
All of those are selected as Duu(1) = diag([|uu|, 05×1]),
Duu(2) = diag([|vu|, 05×1]), Duu(3) = diag([|wu|, 05×1]),
Duu(4) = diag([|pu|, 05×1]), Duu(5) = diag([|qu|, 05×1]),
Duu(6) = diag([|ru|, 05×1]), Duu(7) = diag([1, 0, 0, 0, 0, 0]),
Duu(8) = diag([0, 1, 0, 0, 0, 0]), Duu(9) = diag([0, 0, 1, 0, 0, 0]),
Duu(10) = diag([0, 0, 0, 1, 0, 0]), Duu(11) = diag([0, 0, 0, 0, 1, 0]),
Duu(12) = diag([0, 0, 0, 0, 0, 1]), Dau(1) = diag([|ua|, 0, 0]),
Dau(2) = diag([|va|, 0, 0]), Dau(3) = diag([|ra|, 0, 0]), Dau(4) =

diag([1, 0, 0]), Dau(5) = diag([0, 1, 0]), and Dau(6) =

diag([0, 0, 1]). Other model parameters can be referred to
Table I.

To evaluate the superiority of the proposed control
method in control performance and robustness, actual
disturbances induced by wind, wave, and current are
considered. In practical applications, ASVs are typically
subjected to coupled disturbances induced by wind and
waves, whereas UUVs are primarily influenced by ocean
currents. Among them, the current disturbances, with dif-
ferent amplitudes and periods, are relatively gentle com-
pared with wind and wave effects. Therefore, the current

disturbances are modeled in a low-frequency and bounded
form as du = [−5 sin(0.06t)N,−4 sin(0.05t)N,−5 sin(0.04t) −
cos(0.02t)N,−4 cos(0.02t)N ·m,−2 sin(0.06t) − 3 cos(0.03t)N ·
m,−6 sin(0.01t)N ·m]>. In contrast, as in [46], the wind forces
acting on the ASV are closely related to several factors,
involving wind velocity Vwind, the ASV length La, frontal
and lateral projected areas AFw , ALw , and wind angle of
attack γwind. The wave-induced disturbance can be separated
into two effects: zero-mean oscillatory motions called wave-
frequency motion, and nonzero slowly varying components
called wave drift force. Besides, the wave spectrum is sim-
ulated by a two-parameter wave spectral formulation called
“Pierson-Moskowitz” (PM) spectrum system. Specific models
and corresponding parameters of both wind and wave are
chosen the same as those in [51]. In this article, typical
sea conditions covering slight and moderate sea states (SS),
that is, SS-3 with Vwind = 5 m/s, γwind = π/4 rad, AFw =

0.029 m2, ALw = 0.1255 m2, La = 1.225 m, wave height
Hwave = 0.54m, and initial values of the wave drift force
dwave0 = [10 N, 5 N, 4N · m]> are set for testing the proposed
control strategy.

B. Result Analyses

Simulation results are presented in Figs. 3–6. To thor-
oughly demonstrate the superiority and effectiveness of the
proposed approach, two representative benchmark controllers
are included for comparison: the adaptive IDA-PBC controller
from [41], and the disturbance-compensating distributed non-
linear MPC (DC-DNMPC) method from [24]. All controller
parameters and uncertainty configurations are kept identical to
ensure a fair comparison.

The rendezvous results obtained by the three methods are
shown in Fig. 3. As illustrated in Fig. 3(a), the proposed
method enables the ASV and the UUV to rapidly converge
toward each other and achieve a coherent 3-D dynamic ren-
dezvous. In contrast, the compared methods fail to ensure
simultaneous collision avoidance and satisfactory tracking
performance, as further evidenced by Fig. 4. Fig. 4(a) indi-
cates that the ASV approaches the moving UUV efficiently,
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Fig. 7. Estimation results of the proposed SKUOB. (a) and (b) Estimation results for the UUV. (c) Estimation results for the ASV.

Fig. 8. Control signals of two vehicles under different methods. (a) Control inputs of the UUV (translational). (b) Control inputs of the UUV (rotational).
(c) Control inputs of the ASV.

after which both vehicles maintain a quasistationary relative
position throughout the rendezvous process. The ascending
phase of the UUV is depicted in Fig. 4(b), showing that the
proposed method produces a smooth and safe ascent trajectory.
The enlarged view highlights that the proposed controller
drives the UUV along a smooth constrained ascent without
violating the safety-depth requirement, whereas the compared
method does not meet this constraint. This observation is
consistent with Fig. 5, in which the depth error remains strictly
bounded within the prescribed upper and lower limits under
the proposed approach. The UUV–ASV rendezvous errors
and the UUV tracking errors of the predefined trajectory
are summarized in Fig. 6. As shown in Fig. 6(a) and (b),
the compared method exhibits much slower error conver-
gence or even violates safety constraints, while the proposed
OSK-IDA strategy achieves fast, stable, and accurate ren-
dezvous performance, as further verified by the error curves in
Fig. 6(c).

Fig. 7 plots the estimated lumped uncertainties, includ-
ing SS-3-type disturbances and unmodeled dynamics, for
both vehicles. The dashed curves, representing the esti-
mates, converge accurately to the solid curves representing
the true uncertainty profiles under the proposed method. In

comparison, neither benchmark controller can compensate for
such time-varying uncertainties. These results demonstrate that
the proposed SKUOB provides reliable estimation perfor-
mance under realistic environmental disturbance conditions.
With accurate lumped uncertainty estimation, the resulting
observer-based rendezvous control inputs for both vehicles
are depicted in Fig. 8. All control signals remain within
reasonable bounds, indicating that the proposed OSK-IDA
approach effectively utilizes the actuator capabilities while
maintaining stable and safe rendezvous behavior.

VI. CONCLUSION

This article presents an observer-based safety-preserving
rendezvous control approach for heterogeneous marine vehi-
cles subject to external disturbances and model uncertainties.
Specifically, the interconnection and damping assignment
method is used to design and analyze the control systems
under the PH theory. With the proposed SKUOB algo-
rithm, both the time-varying disturbances and unmodeled
dynamics can be handled simultaneously while preserving
the intrinsic interconnection structure offered by the PH
framework. By incorporating the PPC technique into the IDA-
PBC design method, the rendezvous safety can be ensured
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despite unknown uncertainties by addressing the equivalent
collision-free approaching-constrained problem under the PH
framework. The overall closed-loop stability is analyzed for
the UUV-ASV rendezvous system. Through comprehensive
simulations, the effectiveness of the proposed OSK-IDA
method is verified.
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