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Abstract—Microwave filters (MFs) are indispensable in com-
munication systems for selecting specific frequency signals. The
tuning of MFs is a demanding and time-consuming task, which
can be addressed by the inverse decision-making model (IDMM).
However, two main challenges arise in the sampling process
for IDMM, namely, low efficiency due to the large number
of samples and poor adaptability in the presence of uncertain
initial positions. To overcome these challenges, a fuzzy non-
uniform sampling (FNUS) method is proposed leveraging the
flexibility of fuzzy logic system. Specifically, an adaptive sampling
framework based on a fuzzy logic system is presented to handle
the uncertainty of initial positions. Under this framework, a non-
uniform sampling approach is devised to collect fewer samples
far from the target and more samples close to the target. Given
the similarity and single-sided distribution of samples in the raw
dataset oriented to modeling, the tailored enhancement strategies
are designed to improve dataset quality. Fnially, the efficiency
and adaptability of FNUS are demonstrated to be superior
to the existing methods through simulations. Furthermore, the
practicality of FNUS is validated by experiments on physical
MFs.

Index Terms—Adaptive sampling, data-driven modeling, in-
verse decision-making, microwave filters, non-uniform sampling.

I. INTRODUCTION

M ICROWAVE filters (MFs) are key assets to select the
signals in specific frequencies, and thus play an essen-

tial role in modern communication systems [1]. The frequency-
selection characteristics of MFs are corrected to compensate
for the design and manufacturing errors by adjusting geometric
parameters (GPs) in tuning process. This process relies heavily
on human expertise, which imposes a heavy toll on time and
resource [2]. As a result, automatic tuning methods are rapidly
developing propelled by the great demand of MFs.
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A. State of the Art on Automatic Tuning
Tuning aims to find the feasible GPs (FGPs) corresponding

to the specified filtering requirements. The existing methods
can be categorized into two categories, namely, the forward
evolution based tuning and the inverse decision-making based
tuning, which are summarized as follows:

1) Forward evolution based tuning: This technique adjusts
GPs incrementally to improve filtering performance. Typical
forward evolution based tuning methods are developed with
feature comparison [2], [3], space mapping [4], heuristic
optimization [5], and reinforcement learning [6]. The feature
comparison method extracts circuit features from the measured
performance parameters, and adjusts GPs based on the dif-
ference of the actual and target features [2], [3]. The space
mapping method obtains FGPs by mapping the optimized GPs
between two parameter spaces, and the mapping relationship
is iteratively corrected to make mapping accurate [4]. The
heuristic optimization method optimizes GPs through swarm
search to reach the satisfying performance [5]. The reinforce-
ment learning method dynamically changes tuning strategy to
guide the adjustment of GPs based on the current performance
and historical action effects [6].

A common issue of the aforementioned methods lies in the
requirements of massive iterations. Implementing these itera-
tions on the actual MFs not only diminishes tuning efficiency,
but may also damages to MFs. The surrogate model that maps
GPs to filtering performance is used to perform iterations in
place of MFs [5], [7]. A simulation model based on full-
wave electromagnetic analysis can reflect the characteristics of
MFs accurately, but require huge computational time [8]. In
contrast, data-driven models computes filtering performance
fast, but need to handle the high-dimension parameters and
global complex nonlinear relations.

2) Inverse decision-making based tuning: Inverse
decision-making deduces the FGPs according to the specific
filtering requirement. It is more efficient than forward
evolution as it does not need massive iterations [9]. The key
of this approach is to establish an inverse decision-making
model (IDMM) that maps filtering performance to GPs [10].
Unlike surrogate models, IDMM is more concerned with the
mapping relationship in the vicinity of FGPs, alleviating the
above challenges.

Due to the complex electro-mechanical coupling character-
istics of MFs, it is hard to obtain the analytical function of
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the inverse mapping relationship. A feasible solution is the
data-driven modeling approaches [10], [11]. These approaches
mainly contain sampling and modeling steps. Among them,
sampling plays a foundational and key role. The quality and
distribution of the collected samples directly influence the
accuracy of the model. The number of the collected samples
impacts the efficiency of the whole tuning process. Since col-
lecting data on MFs is effort extensive due to the cumbersome
operation, sampling for building IDMM has received extensive
attention and are discussed in the next subsection.

B. State of the Art on Sampling for building IDMM

It is the most common way to collect samples randomly
with a uniform distribution in microwave modeling [12], [13].
This way implies that each sample in the space has an equal
probability of being collected. However, each sample is of
unequal value for inverse modeling. IDMM aims to find FGPs
x∗ corresponding to the satisfying performance. The local
mapping around x∗ is rather important than the other mapping.
The samples close to x∗ are more valuable for improve the
accuracy of IDMM, while the samples far away from x∗

are of little help. As dateset quality depends on the degree
where samples represent the space of interest to models [14],
uniform sampling results in an low-quality dataset where more
samples are located far from x∗ while fewer are near x∗. This
case is unavoidable unless the sample number is sufficiently
large. Therefore, non-uniform sampling methods have been
developed to collect more samples in the vicinity of FGPs.

A hybrid sampling approach initially performs uniform
sampling across the global space, followed by a greedy
sampling to collect more samples around the best GPs of the
current dataset [15]. An iterative sampling method determines
the location and number of sampling based on the model
performance in the previous phase by interpolation, until the
interpolation error is less than the threshold [16]. A Bayesian-
inspired method evaluates the outcome probability of adding
new samples in different spaces and selects the space with the
highest probability as the sampling space [17]. A parallel local
sampling strategy is designed based on Gaussian process, by
which multiple local samples are generated in parallel around
the predicted optimal solution [18].

The above methods [15]–[18] increased the proportion of
high-quality samples in dataset by identifying the potential
space. However, the determination of the potential space
requires the analysis of an initial dataset. The initial dataset
is also collected randomly or uniformly. It means that the
poor quality of the initial dataset will lead to the inefficient
sampling. Meanwhile, these sampling methods are hardly
employed to the various initial GPs of MFs in tuning process.
Due to the unknown FGPs and uncertain GPs, it is hard to set
sampling range. Too small range may not contain FGPs and
lead to a low-quality dataset, while the large range have to
increase the number of samples and results in low efficiency.

C. Motivations and Contributions

IDMM has been demonstrated to be more efficient than the
forward evolution based tuning methods [9]. For data-driven
IDMM, the key to build them is sampling process. The existing

sampling methods faces two challenges, namely, the low effi-
ciency due to large sample number, and the poor adaptability
in the presence to uncertain initial positions. To handle these
challenges, fuzzy logic system (FLS) is introduced to enhance
the non-uniformity and adaptability of sampling.

FLS is a rule-based inference framework that is particularly
effective for modeling and decision-making under uncertainty
[19], as demonstrated in various applications such as robotics,
autonomous vehicles, and other complex systems [20], [21].
Leveraging fuzzy rule reasoning, FLS can adaptively approach
unknown targets from uncertain initial conditions based on
available information [22], making them well suited for sam-
pling tasks in microwave filter tuning. By introducing FLS
into the sampling strategy, the need to manually define a
fixed sampling range can be eliminated. More importantly,
the variable universe mechanism in FLS allows the dynamic
adjustment of the decision domains [23], [24], enabling the
sampling step-size to be continuously adapted according to the
local sample quality or sensitivity. This mechanism contributes
to the non-uniformity of the dataset by allocating larger steps
in space far from the target and finer steps near high-interest
space, thereby enhancing the non-uniform of the dataset.

In light of above motivations, an fuzzy non-uniform sam-
pling (FNUS) method is proposed to build IDMM for tuning
MFs. The main contributions are threefold: 1) A FLS-based
sampling framework is presented to increase the adaptation
across diverse individuals; 2) under this framework, a non-
uniform sampling approach is devised to collect samples ef-
ficiently. This approach contains the experience-based evalua-
tion of sample quality and quality-driven inference of sampling
position; 3) the modeling-oriented enhancement strategies are
designed to deal with the similarity and single-sided distribu-
tion of samples and improve the dataset quality.

The remainder of this paper is organized as follows: Section
II formulates the sampling problem. Section III gives the de-
tails of FNUS. Section IV presents simulation and experiment
analysis, followed by conclusions in Section V.

II. PROBLEM FORMULATION

This section describes the tuning process based on IDMM,
the modeling process of IDMM, and the problem of sampling.

A. Tuning process based on IDMM

In Fig. 1, the depths of holes in the cavity of MFs are
considered as GPs, denoted by x = [x1, ..., xm], where m
is the number of holes. Due to the error in production, the
initial GPs x0 is often within a certain range I0 of the
design value x̂ in the normal distribution. Given x0, filtering
performance is measured by a vector network analyzer (VNA)
in the form of scatter matrix (S-matrix). S-matrix is denoted
as s = {s11, s21} ∈ CNγ×2, where Nγ represents the number
of sampling frequency points. Parameters s11 and s21 stand
for the reflection and transmission characteristics, denoted by

s11 = a11 + i×b11, s21 = a21 + i×b21, (1)

where i is the imaginary unit. The amplitudes of s11 and
s21 construct the amplitude-frequency response (AFR). AFR
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Fig. 1. The tuning process based on IDMM.

expresses the loss and gain of signal, denoted by Ra =
{Ra

11,R
a
21} ∈ RNγ×2. Ra

11 and Ra
21 are calculated by

Ra
11 = 20 log10

√
a2
11 + b211,

Ra
21 = 20 log10

√
a2
21 + b221.

(2)

AFR displays Performance indicators (PIs) intuitively,
which are defined as follows:

1) Center frequency represents the center of passband and
is calculated by

wc =
√
wu ∗ wd, (3)

where wu and wd are the upper and down cut-off frequencies.
2) Bandwidth denotes the width of passband and is calcu-

lated by
W = wu − wd. (4)

3) Return loss is the maximum amplitude of peaks P in the
passband, namely,

ξ = max (A(P )), (5)

where A(·) calculates the amplitudes of peaks.
In the tuning process, center frequency and bandwidth are

required to be within a certain range of the target values. This
requirement means that the actual wc and W that are too much
greater or less than the target values will be unsatisfied. On the
other hand, return loss should be below the target value. This
requirement illustrates that the actual ξ is unsatisfied when it
is greater than the target value and satisfied when less than the
target value. In order to judge whether tuning is successful,
differences of the actual and target PIs d = [d1, d2, d3] are
designed as

d1 = |(
√
wu × wd − w∗

c )|,
d2 = |(wu − wd)−W ∗)|,
d3 = ξ − ξ∗,

(6)

where | · | represents the absolute operation; w∗
c , W ∗, and ξ∗

are the target PIs P ∗. The differences d1 and d2 reflect the
accuracy of frequency selection. They are defined as absolute
differences and thus do not take into account whether wc and
W are greater or less than the target values. The difference
d3 indicates the transmission quality. It is a signed value and
defined as positive when the ξ is greater than ξ∗, negative
when ξ is smaller than ξ∗, and zero when the two values are
equal. Thus, MFs satisfy the requirements when

d1 ≤ d∗1, d2 ≤ d∗2, and d3 ≤ d∗3, (7)

where d∗ = [d∗1, d
∗
2, d

∗
3] is the maximum allowable errors.

If the condition d ≤ d∗ is unsatisfying, GPs are tuned to
xp, which is the predicted FGPs by IDMM M .

B. Modeling process of IDMM

Data-driven IDMM is constructed through sampling and
modeling. In the sampling step, x is adjusted and the cor-
responding s is measured after the adjustment. Each pair of
x and s is considered as a sample, and all pairs constitute
the dataset D = {X,S}, where X = [x(1), ...,x(Ns)]

T and
S = [s(1), ..., s(Ns)]

T . In the modeling step, S-matrix is used
as the input. With GPs as the output, IDMM is formulated as

xp = h(s). (8)

In this paper, the mapping relationship h is built using the
state-of-art method in [25]. Once M is trained well, xp is
obtained by inputting the satisfying S-matrix s∗ to M .

In summary, tuning success rate depends on the accuracy
of IDMM. When the modeling method is fixed, the accuracy
is mainly affected by the dataset quality.

C. Sampling problem

Sample quality and sampling efficiency need to be consid-
ered simultaneously in the sampling process. To achieve the
goals of high quality and efficiency, sampling is challenging
not only caused by the unknown x∗ and the uncertain x0,
but the nonlinear mapping between GPs and PIs. Fig. 2
is an illustration that shows the complex sampling space.
It can be seen from the left scatter-plots that the equally-
spaced samples correspond to the uneven PIs, indicating the
strong nonlinear. This nonlinear is more evident in the right
heatmaps and intensifies with the increasing dimension of
GPs. In addition, considering sampling efficiency, the number
of samples in dataset is as small as possible while ensuring
adequate characterization of the space that IDMM focuses on.

Based on the above discussion, sampling space is divided
into the space Ba that is around x∗ and the space Bf that is
far from x∗, i.e.,

Ba(x
∗) = {x|d(x,x∗) ≤ ds},

Bf (x
∗) = {x|d(x,x∗) > ds},

(9)

where ds is the boundary set of all dimensions that distin-
guishes the proximity of a sample to the target. The probability
that a sample is collected in Ba(x∗) is

PBa
(d(x,x∗)) =

∫
Ba(x∗)

p(x|x∗)dx, (10)
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Fig. 2. The illustrative example of sampling space. Each sub-figure presents
the variation of one performance indicator with two-dimensional GPs. The
left scatter-plots display the indicators when x1 is fixed and x2 takes 100
samples at an equal interval within the boundaries of sampling range. The
right heatmaps show PIs in the globe space. The unit of each color-bar in
heatmap is the same with the unit of the vertical coordinate in the left scatter-
plot. The targets of PIs are covered in red in the left scatter-plots, and boxed
in red in the right color-bars. The spaces around the target PIs are circled in
red in heatmaps.

where p(x|x∗) represents the probability density function. The
sampling object is to reduce Ns with PBa(d(x,x

∗)) as large
as possible, namely,

min Ns s.t.
PBa

(d(x,x∗)) ≥ αs,
x0 ∼ N (x̂, σ2) and x0 ∈ [x̂− I0, x̂+ I0],
x∗ is unknown,

(11)

where N means normal distribution and σ is standard de-
viation; αs is the desired probability of samples in Ba(x

∗)
relative to all samples; I0 is the set of possible variation ranges
for GPs. To solve the problem, FNUS is designed.

III. FUZZY NON-UNIFORM SAMPLING

This section describes the framework of FNUS, and then
gives the details of every part.

A. Framework of FNUS

Fig. 3 presents the framework of FNUS, which consists
three parts, namely, the inference of sampling position, the
evaluation of sample quality, and the enhancement of dataset.

To improve sampling fitness, GPs are adjusted one by
one until the switch condition is met, other than adjusted
simultaneously. Adjusting all GPs in turn once is called a
round. In the new round σ + 1, re-adjustment is conducted
from x1 to xm until the completed condition is met.

The switching condition is that the maximum adjusting
number Na on a geometric parameter (GP) is reached, or the

changes of evaluation results ∆Fσg (j − 1) and ∆Fσg (j) are
both less than a threshold θF , i.e.,

C1 =

{
1, ∆F gσ (j − 1) < θF and ∆F gσ (j) < θF or j = Na,
0, otherwise,

(12)
where j is the adjusting number on xg in the σth round, and
g = 1, ...,m. The switching condition is performed when j ≥
3. The completed condition is that PIs reach the set value, i.e.,

C2 =

{
1, d1 ≤ d∗1, d2 ≤ d∗2, and d3 ≤ γ · d∗3,
0, otherwise,

(13)

where γ ∈ [0, 1] stands for the proximity to d∗3. γ is set through
experiments based on the fact that a larger γ improves the
quality of the best sample but wastes more time.

In each adjusting, xσg is calculated by

xσg (j) = xσg (0) +

J∑
j=1

uσg (j), (14)

where J is the total tuning number on xg in the σth round.
After each adjusting, sgσ(j) is measured by VNA, and the data
pair {xgσ(j), sgσ(j)} is obtained. All data pairs until the com-
pleted condition is met form the raw dataset D0={X0,S0}.

Subsequently, the enhancement strategies are conducted to
improve dataset quality by removing similar samples from D0

to generate D1, and collecting high-quality samples around
the final sample in D1 to obtain D2. Finally, the dataset D is
constructed by combining the two sub-datasets D1 and D2.

B. Experience-based evaluation of sample quality

The evaluation of sample quality guides the inference of
sampling position and judges whether sampling is completed.
Since the boundary ds is hard to determine, expert experience
is introduced. Manual tuning goes through the frequency and
loss adjustment stages successively. In the frequency adjust-
ment (FA) stage, wc and W are adjusted in large increments,
while ξ is fine-tuned in smaller steps under the satisfying w∗

c

and W ∗ during the loss adjustment (LA) stage. Consequently,
samples from the FA stage are considered to be far from x∗

and of lower quality, whereas samples from the LA stage are
viewed as closer to x∗ and of higher quality.

According to subsection II.A, there are three direct PIs.
In addition, the number of peaks nR reflects the state of
resonators. Specifically, nR equals to m−1 if all resonators are
in good state. It is also an important reference for evaluation
and taken as another indicator. If these four PIs are the inputs
of FLS, the computational complexity would get increased
dramatically [26]. Therefore, the comprehensive evaluation for
multiple PIs is designed, where PIs are categorized into two
groups based on their importance at different stages, namely,

F (j) = αf (j)
[
f̄1(j) + f̄2(j), f̄3(j) + f̄4(j)

]T
, (15)

where F (j) is the evaluation result of the jth sampling; sub-
functions f̄1(j)-f̄4(j) are the normalized results of four PIs
to avoid the influences of different units and variable ranges;
αf (j) is the weight vector of sub-functions. The sample
quality is evaluated after each sampling, so the scripts σ and
g are omitted in this sub-section.
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1) Normalized sub-functions: The first three sub-functions
are related to differences d1, d2, and d3, respectively. They
are defined as

f̄q = max(1− 2/(1 + eβq∗dq ), 0), q = 1, 2, 3, (16)

where βq is an expansion-factor that make f̄q vary obviously
within their respective ranges, and is determined by experi-
ments. The sub-function f̄4 relates to nR, and is defined as

−
f 4 = [(m− 1)− nR]/(m− 1). (17)

All sub-functions belong to [0, 1) and with the same mono-
tonicity, i.e., a lower value indicates higher quality.

2) Weight vector: The vector αf emphases the correspond-
ing sub-functions in different stages, and is defined as

αf =


[
α1
f , 1

]
, f̄1 > f̄∗1 and f̄2 > f̄∗2 (FA stage),[

1, α2
f

]
, otherwise(LA stage),

(18)
where α1

f > α2
f > 1; f̄∗1 and f̄∗2 are calculated by

f̄∗q = 1− 2/(1 + eβq∗d∗q ), q = 1, 2. (19)

C. Quality-driven inference of sampling position

The inference of sampling position consists of constrained
random inference (CRI) and fuzzy adaptive inference (FAI).
They both adjust sampling step-sizes driven by sample quality.

For the first sampling on xσg , CRI is performed by

uσg (1) =

{
max(r1 · I0(g) ∗ F σg (0)/F̃ , θx), r1 ≥ 0

min(r1 · I0(g) ∗ F σg (0)/F̃ ,−θx), r1 < 0
(20)

where r1 is a random number in [−1, 1] to increase sample
diversity, which is enhanced by setting the minimum adjusting
value θx ∈ R+; F σg (0) represents the evaluation result of
sσg (0); F̃ denotes the maximum of all evaluations so far, which
is used to normalize Fσg (0).

The following sampling positions on xσg are calculated by
FAI. The inputs of FAI include the current evaluation F (j),
the change of evaluation ∆F (j) = F (j)− F (j − 1), and the
current change of sampling position u(j). The output of FAI
is the next change of sampling position u(j + 1).

The key of fuzzy logic dealing with uncertain is fuzzy
sets and rules. To construct fuzzy sets, the inputs and output
of FAI are fuzzified by the membership functions shown in
Fig. 3. The fuzzy set of F (j) consists of small (S), middle
(M), and big (B), which stands for good, medium, and poor
quality, respectively. The fuzzy set of ∆F (j) is composed of
negative big (NB), negative small (NS), positive small (PS),
and positive big (PB). They reflect the changing trend of
performance that is better dramatically, better slightly, worse
slightly, and worse dramatically, respectively. The fuzzy sets
of u(j) and u(j + 1) are NB, NS, PS, and PB, indicating
the adjusting direction and range that is reverse large, reverse
small, forward small, and forward large, respectively.

To achieve non-uniform sampling, the universe set l =
{lF , l∆F , lu} is dynamically changed. The universe bound-
ary of F (j) is determined based on the range of F , i.e.,
lF = 2 ∗ α1

f + 2 in the FA stage and lF = 2 ∗ α2
f + 2 in

the LA stage. The universes of u(j) and u(j+1) are changed
for each GP in every round because it plays a direct role in
referring sampling position. The universe lu is calculated by

lu = F gσ (0) · e−sgn[λ̄(σ,g)−Φ(λ̄)]λ̄(σ,g) · I0(g), (21)

where λ̄(σ, g) is the normalized sensitivity and the initial sensi-
tivity λ(σ, g) = |∆F gσ (1)|/ugσ(1); λ̄ stands for the normalized
λ using the max-min normalization, and λ is the sensitivity
sequence containing all λ(σ, g); Φ(λ̄) indicates the median of
λ̄; the operator sgn[·] is defined as

sgn[λ̄(σ, g)− Φ(λ̄)] =

 1, λ̄(σ, g) > Φ(λ̄)
0, λ̄(σ, g) = Φ(λ̄)
−1, λ̄(σ, g) < Φ(λ̄),

(22)

According to Eqn. (21), lu is influenced by the initial sample
quality F gσ (0) and the sensitivity λ̄(σ, g) in the vicinity of the
initial sample. A high F gσ (0) indicates the low quality, result-
ing in a large universe boundary, vice versa. For λ̄(σ, g), it is
compared with Φ(λ̄) to dynamically evaluate sensitivity. When
λ̄(σ, g) is high, lu is compressed for the accurate exploitation.
Otherwise, lu is expanded for the wide exploration. With the
constant membership function, a large lu leads to larger steps
and fewer samples, enhancing global exploration. In contrast,
a small lu leads to smaller steps and more samples, improving
local exploitation around x∗.
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TABLE I
FUZZY RULES OF AFI

F (k)
u(k)

∆F (k)
NB NS PS PB

B

NB NB NB PB PB
NS NS NB PB PB
PS PS PB NB NB
PB PB PB NB NB

M

NB NS NB PB PB
NS NS NS PS PB
PS PS PS NS NB
PB PS PB NB NB

S

NB NS PB PS PS
NS NS NS PS PS
PS PS PS NS NS
PB PS PB NS NS

Fuzzy rules are in the “IF-THEN” form [27], and listed in
TABLE I. The design principles are as follows.

1) When F (j) is big, the aim of AFI is to collect fewer
samples and enter into the LA stage quickly in the FA stage;
when in the LA stage, samples converge closer to the x∗. The
strategy of changing sampling position tends to be bold.

2) When F (j) is middle, sampling may be in a phase shift
from FA to LA, or in the neighbor of x∗. The strategy of
changing sampling position is suggested to be conservative
relatively. Unless when quality gets much worse, a substantial
reverse changing is necessary.

3) When F (j) is small, sampling is most in the LA stage
and AFI is expected to collect more samples. The strategy of
changing sampling position is conservative.

D. Modeling-oriented enhancement of dataset

The raw dataset D0 has two shortcomings that affect dataset
quality for building IDMM. Firstly, there are massive samples
with similar responses caused by GPs with minor differences.
As shown in Fig. 5(a), each group (1-3, 4-7, 8-12, and 16-
18) contains multiple samples, and the responses R11

a are
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Fig. 5. Analysis of samples in D0. Sub-figure (a) shows Ra
11 and Ra

21 of 20
samples continuously collected using CRI and FAI. The amplitude-frequency
response Ra

21 is similar for almost all samples. Moreover, the amplitude-
frequency response Ra

11 also shows that there are some similar groups, such as
numbers 1-3, 4-7, 8-12, and 16-18. These observations confirm the existence
of sample similarity in the raw dataset. Sub-figure (b) shows the locations of
some FGPs (x∗1, x

∗
2, and x∗3) and GPs of samples in D0 (x1, x2, and x3).

The red ranges are the boundaries of FGPs.

almost overlapping with each other. These samples increase
the risk of overfitting when modeling and rise the time of
training IDMM. This case often happens especially in the LA
stage, due to the fact that the changing of sampling position
becomes progressively smaller with the decreasing of F .
Notably, the proximity of GPs is a necessary but not sufficient
condition for similar responses. In the high-sensitivity space
of GPs, small changes of GPs lead to the obvious changes of
responses, mainly in return loss. Thus, the removal of similar
samples should consider the distances on GPs and return loss
simultaneously.

Secondly, samples are usually concentrated on one side of
x∗, as shown in Fig. 5(b). The goal of FAI is to approach x∗

quickly, so FAI does not explore the global space widely, but
rather sampling in a certain direction. Thus, almost all samples
are above or below x∗. This leads to the sampling space
uncovering x∗ or the underdevelopment of the neighborhood
of x∗. These two shortcomings are addressed by the following
ways for a high-quality dataset.

1) The removal of similar samples based on double dis-
tances (DD-SSR): It can be seen that the double distances are
prioritized differently, i.e., the distance of GPs is considered
before the distance of return loss. Thus, the removal of similar
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Algorithm 1 DD-SSR

Input: Sorted sub-dataset D⃗g
σ;

Output: Sub-dataset D̃g
σ that removed similar samples;

1: D̃g
σ=D⃗g

σ(1);
2: for n = 1 to Ng

σ − 1 do
3: dx = |x⃗gσ(n+ 1)− x̃gσ(end)|;
4: if dx ≥ θx do
5: D̃g

σ=[D̃g
σ;D⃗g

σ(n+ 1)];
6: else do
7: dξ = ξ⃗gσ(n+ 1)− ξ̃gσ(end);
8: if |dξ| ≥ θξ do
9: D̃g

σ=[D̃g
σ;D⃗g

σ(n+ 1)];
10: else
11: if dξ < 0 do
12: D̃g

σ(end)=D⃗
g
σ(n+ 1);

13: end if
14: end if
15: end if
16: end for

samples considers the distances of GPs firstly. Additionally,
the complexity of calculating distances among all samples is
very high. Due to the sampling characteristic of one by one,
the whole dataset is segmented into several parts according to
the switching of GPs. For the sub-dataset Dσ

g , all samples are
obtained from the sampling process on xg in the σth round.
They are sorted in the ascending order based on xg first. Then,
the DD-SSR is designed.

For the sorted sub-dataset D⃗g
σ , the distances between neigh-

boring samples dx are calculated. If dx is less than the
threshold θx, the distances of ξ are considered. If dx is still less
than the threshold θξ, two neighboring samples are diagnosed
as similar. Then, the later of the two samples is removed
and the earlier sample continues to be compared with the
next one. Finally, all the sub-datasets make up the dataset
D1 = {X1,S1}. This algorithm is summarized in Algorithm
1, where Ng

σ represents the sample number of D⃗g
σ; D⃗g

σ(1) is
the first sample in D⃗g

σ; xgσ and ξgσ contains the GPs and return
loss of all samples in Dσ

g , respectively.
2) The adding of high-quality samples using minimum

distance rejection (MDR-HQSA): Although most samples con-
centrated on one side of x∗, they are close to x∗, especially the
final sample. Thus, uniform sampling in the vicinity of the final
sample in D1 increases the exploitation to the neighborhood
of x∗, and declines the risk of uncovering x∗. Specially, N2

s

samples are collected by uniform sampling with minimum
distance rejection in a small range [15], i.e.,

x = D1(end) + r2, (23)

where D1(end) is the final sample in D1; r2 ∈ R1∗m is a
random vector, and each element in r2 belongs to the range
(−ϕr2 ,−θx) ∪ (θx,ϕr2), where ϕr2 ∈ R+ is the sampling
boundary and determined by experiments. These samples con-
struct the dataset D2 = {X2,S2}. Notably, similar samples
in D2 are avoided by the mechanism of minimum distance
rejection. Additionally, similar samples between D1 and D2
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Fig. 6. The scheme of the simulation platform.

are few because samples in D1 are almost linearly arranged
but in D2 are evenly distributed in high-dimensional space.

Finally, the dataset D used for training IDMM is comprised
of D1 and D2.

IV. CASE STUDIES

In this section, the effectiveness and advantages of the pro-
posed FNUS are demonstrated on simulations by comparing
with the state-of-the-art sampling methods, and the practicality
of FNUS is validated by experiments on physical MFs.

A. Simulation set-up

The simulation platform was built based on HFSS, MAT-
LAB and Spyder. HFSS is a 3D electromagnetic simulation
software that widely used in the design and analysis of MFs.
It was utilized for solving S-matrix. MATLAB was used for
performing FNUS and constructing dataset. In Spyder, IDMM
was built and the predicting FGPs were obtained.

The simulated microwave filter in Fig. 6 integrates six
resonators arranged in a symmetrical structure. Coupling
between resonators is achieved through a crossing coupler
and a lateral coupler. In order to focus on the validation of
the proposed FNUS, the depths of resonators were initially
selected as the tuning variables in simulations. Due to the
symmetrical structure, the output of IDMM was defined as
x = [x1, x2, x3], and each GP varies in the range ±0.03 mm.
This setup allows for a focused comparison of the effects of
different sampling methods on building IDMM while ensuring
the fundamental tuning conditions. Additionally, the target PIs
were w∗

c = 2.6083GHz, W ∗ = 0.193GHz, and ξ∗ = −20dB.
The maximum allowable values were d∗1 = 0.002GHz, d∗2 =
0.001GHz, and d∗3 = 0.

The parameters of FNUS were detailed below. The weights
of sub-functions were α1

f = 5 and α1
f = 3. The expansion-

factors were β1 = 300, β2 = 1000, and β3 = 0.2. The thresh-
olds were θx = 0.0005 mm and θξ = 0.02. The parameters
of switching condition were Na = 5 and θF = 0.0001. The
parameter of completed condition γ and the sampling range
and number of MDR-HQSA were determined in simulations.
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Fig. 7. Results of parameter analysis. Sub-figure (a) shows the average tuning
success rate of training IDMM three times using the dataset obtained by each
parameter group. Sub-figure (b) shows the box plots of the validation error and
presents the average validation errors in the dotted line. Sub-figure (c) displays
the sample numbers of FNUS with different parameter group. The above three
sub-figures share the same horizontal coordinate, which displays the different
parameter groups and is named as “γ-sampling range-sampling number”. Sub-
figure (d) exhibits the locations of the final samples in all datasets dealt by
DD-SSSR, where the colored regions are covered by twenty x∗.

In all below simulations, IDMM was built using the mod-
eling method in [25]. The validation error is calculated using
mean absolute deviation (MAD), denoted as

L = κL
1

Nv

∑Nv

q=1

∣∣xpq − x∗
q

∣∣, (24)

where κL = 1000 is a factor to make L more obvious and
avoid gradient disappearance; Nv is the sample number of
validation set; xpq represents the predicted value obtained by
inputting the qth sample in validation set, where x∗

q is the
actual value.

B. Parameter analysis

Proximity γ is a key parameter that determines the end
of FNUS, which also affects the subsequent MDR-HQSA in
terms of sampling range and number. These parameters were
determined by comparative analysis. Specially, four different
values of γ (97.5%, 95%, 92.5%, and 90%) were set. For each
γ, two sampling ranges (±0.01 mm and ±0.02 mm) and three
sample numbers (25, 50, and 100) were set. All sampling in
this subsection was based on the same initial GPs. Each dataset
was used to train IDMM for three times, and each IDMM was
tested by twenty kinds of x∗. The sample quality was reflected
by the tuning results and validation errors of IDMM, which
are shown below.

In sub-figure 7(a), the average success rates under γ =
97.5% and γ = 95% are more than those under γ = 92.5%

TABLE II
SAMPLING EFFICIENCY COMPARISON RESULTS OF DIFFERENT METHODS.

Sampling
method FNUS

MCS HS

0.02 0.04 30% 70%

Ns 131 200 400 200 400 200 400 200 400

n̄c 12 0.33 5 5.33 9.33 2.67 3 7.33 10.33

ψ 0.85 0.02 0.12 0.25 0.23 0.13 0.07 0.35 0.25

and γ = 90%. The result is due to two reasons. One is that
there are more samples in D1 to characterize the sampling
space covering the initial and final sampling samples when γ
is bigger, as shown in sub figure 7(c). The other one is that
the final sample in D1 is closer to x∗ for big γ, as shown in
sub figure 7(d), which provides a good base for MDR-HQSA.
Additionally, a small γ may cause the final sample in D1

being located in some spurious local optimum rather than in
a real region close to x∗. Therefore, a big γ is suggested.

The results when γ = 97.5% and γ = 95% are compared
in sub-figures 7(a) and (b). The datasets collecting 50 samples
in the range ±0.01mm by MDR-HQSA achieve the maximum
average success rates and the smaller validation error variance,
which strike balance in D1 and D2. Since the final sample
in D1 is close to x∗, a larger sampling range is unnecessary;
otherwise, a large number of samples would have to be col-
lected. In a small range, if the sample number of D2 is small,
D has insufficient representation of the vicinity of x∗. Finally,
the parameter group is chosen as γ = 95%, ϕr2 = 0.01 mm,
and N2

s = 50, because it gets the higher success rate with
fewer samples compared to the group “97.5%-001-50”.

C. Efficiency analysis

Sampling efficiency means the speed of collecting samples
that can build an accurate IDMM, which is inversely related
to the sample number, and associated with the modeling
accuracy. Here, it was defined as

ψ = n̄c/(1 + κψ ∗Ns), (25)

where n̄c was the average number of successful tuning and
stood for modeling accuracy; Ns denoted the sample number;
κψ was a factor to make ψ more obvious and κψ = 0.1 was
used as the default value.

The sampling efficiency of FNUS was compared with other
two state-of-the-art sampling methods. One is Monte Carlo
sampling (MCS), which is the representative uniform sampling
method that collects a fixed number of samples in a pre-set
range in uniform distribution (MCS has been implemented
practically in [5], [25], [28]). The other one is hybrid sampling
(HS) that combines local and globe sampling; it belongs to
the non-uniform sampling based on the initial dataset (HS has
been implemented practically in [15]). The range of MCS was
set to ±0.02mm and ±0.04mm. To verify the impact of the
initial dataset on sample quality, HS was based on two initial
datasets D1

0 and D2
0 . The ratios υh of high-quality samples to

all samples in these two initial datasets were 30% and 70%.
Additionally, both MCS and HS methods were used to make
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Fig. 8. Distributions of samples collected by all comparative methods. The
color of each sample represents the normalized F̄ , referring to the right
color-bar. Three axes denote GPs in millimeters. The naming rule is “method
name, sampling range/the rate of the initial dataset, sampling name” except
for FNUS. Then, the name of every method is followed by υh.

two datasets with 200 and 400 samples. Each set of simulation
was based on the same initial GPs. Each dataset was used
to train IDMM for three times, and each IDMM was used
to repeat tuning MFs for 20 times. The tuning results are
presented in TABLE II.

For FNUS, although the samples used to train IDMM were
D1 and D2, the sample number used to calculate sampling
efficiency was set to the sum of N0

s and N2
s . Even so, Ns

of FNUS is minimal among all methods. In addition, the
IDMM trained with the FNUS-collected samples successfully
tuned MFs the most times. Accordingly, FNUS achieves the
highest efficiency compared to other representative methods.
For MCS, the small sampling range (±0.02mm) and the range
covered by twenty FGPs overlap only a small portion. A small
number of samples cannot characterize the area covered by
FGPs well, resulting in a low-accuracy IDMM. Notwithstand-
ing more samples increase the accuracy of IDMM, but the
effect is constrained. A large sampling range can cover all
FGPs, but a lot of samples is necessary. For HS, even though
a high-quality initial dataset can improve the quality of the
whole dataset obviously, this initial dataset is hard to obtain.
Likewise, when using HS, more samples are required to get a
high-accuracy IDMM when in a large range.

To analyze why the sampling efficiency of FNUS is high,
the sample distribution of all methods are presented in Fig. 8.
The evaluation result of performance F is normalized to [0,1]
by max-min normalization, namely,

F̄ = (F − Fmin)/(Fmax − Fmin), (26)

where Fmax = 12 and Fmin = 0. The rate υh is low using
MCS, demonstrating that the uniform distribution of samples
over the GP space results in non-uniform space of perfor-
mance. The rate υh using MCS with ±0.02mm sampling range
is twice the rate υh with ±0.04mm, illustrating FGPs only
locate in a small range. The rate υh using HS is affected by
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Fig. 9. The adjustment of sampling positions calculated by two kinds of
inference.

the initial dataset strongly, and a high-quality initial dataset can
cause a high υh. Additionally, the rate υh would be improved
with the increasing Ns. This is caused by the mechanism that
local sampling around the current optimal sample. When the
sampling number is large, the current optimal sample is closer
to x∗ and more high-quality samples are collected. Compared
to other methods, the rate υh of FNUS is highest (42.86%), as
it reduces the low-quality samples and focuses on collecting
high-quality samples. In fact, the non-uniform characteristic
of dataset is increased due to FAI and MDR-HQSA. Fig. 9
shows the adjustment values u of GP calculated by FNUS.
It converges to 0 gradually, indicating the FNUS explores
sampling space widely in the FA stage while exploits space
elaborately in the LA stage. Therefore, the FNUS effectively
improves the sample quality and sampling efficiency.

D. Adaptation analysis

The adaptability refers to the correlation between the sample
quality and the parameter setting of sampling methods when
oriented to MFs with various initial GPs. Sample quality is
reflected by n̄c, and strong correlation means poor adaptability.

To simulate the errors in the actual production, five kinds of
initial GPs were generated randomly around the neighborhood
of the design GPs in normal distribution. The PIs of MFs
with differrnt initial GPs are presented in TABLE III. For the
analysis of adaptation, FNUS is compared with MCS due to
the fact that MCS and HS are both affected by the sampling
range. FNUS keeps the same parameter setting as before. The
difference in the parameter setting of MCS were mainly in
two sampling ranges, with sampling number set based on the
principle of consistency in sample density. Likewise, twenty
replicate testing were performed in each set of simulation. The
results are presented in TABLE III.

The numbers n̄c always maintain at a high level when
using the FNUS on the various initial GPs with the same
parameter setting. However, the MCS method with varying
sampling ranges exhibits significant performance differences
when faced with the different initial GPs. Besides, the FNUS
collected fewer samples but achieved a higher number of
successful tuning compared to the MCS across two parameter
settings, regardless of the initial GPs. Consequently, the FNUS
is adaptive.

To analyze how FNUS adapts to various initial GPs, the dis-
tribution of x0 and D1(end) in five simulations are presented
in Fig. 10. The distances of all x0 from x∗ are indeterminate
and at least one dimension is far away from x∗, while all
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TABLE III
SAMPLING ADAPTATION RESULTS OF DIFFERENT METHODS ON MFS WITH DIFFERENT INITIAL GPS

Sampling methods FNUS
MCS

±0.02mm ±0.04mm

Sample number Ns 131 99 96 193 119 200 400

MFs with
the different
initial GPs

Index PIs Average success number n̄c

1 wc=2.6141GHz, W=0.193GHz, ξ=-6.535dB 12.00 \ \ \ \ 0.33(11.67 ↓) 9.33(2.67 ↓)

2 wc=2.6163GHz, W=0.193GHz, ξ=-15.21dB \ 10.67 \ \ \ 5(5.67 ↓) 5.33(5.33 ↓)

3 wc=2.5943GHz, W=0.189GHz, ξ=-13.17dB \ \ 10.67 \ \ 3.33(7.33 ↓) 4.67(6.00 ↓)

4 wc=2.6042GHz, W=0.193GHz, ξ=-6.38dB \ \ \ 10.33 \ 1(9.33 ↓) 3(7.33 ↓)

5 wc=2.5962GHz, W=0.193GHz, ξ=-15.15dB \ \ \ \ 11.33 3.33(8.00 ↓) 4.00(7.33 ↓)
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Fig. 10. The distributions of x0 and x̂. The orange points represents x0,
and the blue points stand for x̂. The purple ranges cover all x∗.

D1(end) are in or very close to the space covered by x∗. This
indicates that FNUS gradually approaches from the uncertain
x0 to the vicinity of the unknown x∗, by which the parameter
setting problem can be resolved so that MDR-HQSA is always
performed in a small space to obtain high-quality samples.

E. Validation on MFs with both adjustable resonance and
coupling parameters

The above simulations have demonstrated the higher ef-
ficiency and better adaptation of FNUS than the existing
representative sampling methods on MFs with only adjustable
resonance parameters. In order to simulate more complex and
representative tuning scenarios, coupling parameters are also
taken into account in this subsection. Coupling parameters
are related to the energy transfer between resonators. As
presented in Fig. 6, Coupler 1 is near to Resonators 1, 2, 4
and 5, enabling significant adjustment of the coupling strength
between these resonators. In contrast to Couplers 2 and 3, the
position and size of Coupler 1 can be independently controlled
without breaking the overall geometrical symmetry. Therefore,
the width of Coupler 1 was chosen as the coupling parameter
to be adjusted, denoted as x4. The output of IDMM was
defined as x = [x1, x2, x3, x4], with the variation range of
x4 is ±0.5mm.

The validation of FNUS on MFs with both adjustable
resonance and coupling parameters was conducted with the
comparison to MCS. The initial values of all GPs were

TABLE IV
COMPARISON RESULTS OF FNUS AND MCS ON MFS WITH BOTH

ADJUSTABLE RESONATOR AND COUPLING PARAMETERS.

Sampling method FNUS MCS

Ns 353 403 500 700 900 1100

n̄c 5.8 7.6 2.4 3.4 4 4.8

ψ 0.720 0.839 0.218 0.227 0.211 0.209

set randomly in I0. For the dateset enhancement stage of
the FNUS method, the sampling ranges of x1, x2, and x3
were ±0.01mm and that of x4 was ±0.05mm; the sampling
number was 50, 100, respectively. For the MCS method, the
sampling ranges of x1, x2, and x3 were ±0.03mm and that
of x4 was ±0.5mm; the sampling number was set to 500,
700, 900, and 1100, respectively. Every set of simulation was
performed five times and each simulation used twenty S-
matrices that meet the requirements for test. Then, the average
value of the successful tuning numbers was calculated to
enhance the reliability of results. The comparison results are
presented in TABLE IV, where the sampling number of the
FNUS method used the number before removing similarity
and κψ = 0.02. The sampling efficiency of the proposed
FNUS is very high because it collects fewer samples but builds
IDMMs with the larger n̄c compared to MCS. As the sampling
number raised, the sampling efficiency of FNUS gradually
increased but that of MCS decreased. This is because few
samples collected in the dataset enhancement stage of FNUS
were all close to the target and of high quality, whereas many
samples obtained through MCS were dispersed across the
entire sampling space, with only a small portion exhibiting
high quality.

Fig. 11 illustrates the tuning performance of IDMMs built
by tow sampling methods for the same s∗. It can be seen
that the IDMM built by FNUS (IDMM-FUNS) yields better
performance than the IDMM built by MCS (IDMM-MCS).
This is because FNUS collected more high-quality samples
around the target, which provides more detailed features to
IDMM. In conclusion, the effectiveness of FNUS is verified on
MFs with both adjustable resonance and coupling parameters.
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Fig. 11. The tuning performance of IDMMs built by FNUS and MCS on
the MF with both adjustable resonance and coupling parameters, where Ns

of MCS was 1100.

Industrial Computer

VNA

Mechanical Arm

Performance of Microwave Filter

Microwave Filter

Adjustable GPs

Fig. 12. The actual tuning platform. It contains the physical MF, a VNA
for measuring the performance of MF, a mechanical arm for adjusting GPs,
and an industrial computer for computing the adjusting values through the
proposed method, as well as showing the measured performance.

F. Experiment validation on the physical MF

To validate the effectiveness of the proposed FNUS method
in the practical tuning scenario, both FNUS and MCS were
applied on a physical MF, as shown in Fig. 12 [28]. The MF
is equipped with six adjustable GPs. Due to manufacturing
errors, the actual values of these GPs deviated from the
designed ones by unknown amounts, resulting in a detuned
MF with an initial S11 measured at –6.71 dB, as illustrated in
Fig. 13. Therefore, this experiment represents a typical tuning
case.

The target PIs of the physical MF were w∗
c = 0.805GHz,

W ∗ = 0.04GHz, and ξ∗ = −15dB. The maximum allowable
differences were d∗1 = 0.002GHz, d∗2 = 0.001GHz, and
d∗3 = 0. To tune this physical MF, IDMMs were constructed
with the output x = [x1, x2, x3, x4, x5, x6] based on two
sampling methods. For MDR-HQSA of FNUS, the sampling
range of each GP was set to [-18°, 18°], with a total of
100 samples collected. For MCS, the sampling range was
set to [-135°, 135°], with sampling numbers set to 437, 655,
and 874, respectively. As in the previous simulations, the

TABLE V
COMPARISON RESULTS OF FNUS AND MCS ON THE PHYSICAL MF.

Sampling method FNUS MCS

Ns 437 437 437*1.5 437*2

n̄c 8.4 4.4 5.6 6.0

ψ 0.862 0.419 0.367 0.300
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Fig. 13. The tuning performance of IDMMs obtained by FNUS and MCS
on the physical MF, where Ns of MCS was 874. The legends ”S11 Ini”
and ”S21 Ini” represent the pre-tuning performance, ”S11 FNUS” and
”S21 FNUS” stand for the post-tuning performance by IDMM-FNUS, and
”S11 MCS” and ”S21 MCS” are the post-tuning performance by IDMM-
MCS.

samples collected by all methods were used to construct
IDMMs through the same modeling approach described in
[25]. Subsequently, the same set of S-matrices were put into
each IDMM to obtain the corresponding adjusted value of each
GP.

The tuning results are summarized in Table V. Using
the proposed FNUS method, 437 samples were collected
and used to train five models. Each model was evaluated
on tuning tasks, and achieved an average of 8.4 successful
tuning outcomes. In contrast, IDMMM-MCS achieved only
4.4 successful tuning outcomes with 437 samples, and merely
6 successful tuning outcomes even when the sample size was
increased to two times. Fig. 13 illustrates the tuning results
derived from the IDMMs built using both methods. The tuning
results obtained using two IDMMs were generally similar and
closely approximate the target performance, indicating that
both models were capable of capturing coarse-grained features
from the performance responses. However, the return loss
could meet the specified requirement with a higher probability
when using IDMM-FNUS compared to IDMM-MCS. This
indicates that IDMM-FNUS demonstrates superior capability
in extracting fine-grained features. This advantage arises from
the dual strengths of FNUS in adaptive exploration and precise
exploitation. It is capable of efficiently navigating from an
uncertain initial state to the vicinity of the target, where it
gathers a large number of high-quality samples to support
accurate modeling.

To comprehensively validate the effectiveness and robust-
ness of FNUS, it was compared to MCS on a large number
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TABLE VI
SAMPLING ADAPTATION RESULTS OF DIFFERENT METHODS ON THE

PHYSICAL MF WITH DIFFERENT INITIAL GPS

Sampling methods FNUS
MCS

±90° ±135°

Sample number Ns 437 433 472 373 555 655 874

MFs
with
the

different
initial
GPs

PIs Average success number n̄c

ξ=-6.71dB 8.4 \ \ \ \ 4.4 6

ξ=-6.52dB \ 10.2 \ \ \ 5.6 8.8

ξ=-5.67dB \ \ 9 \ \ 4.4 7.8

ξ=-6.89dB \ \ \ 8.2 \ 3.6 7.6

ξ=-6.37dB \ \ \ \ 9.2 4.2 8

of sampling experiments starting from different initial GPs.
In these experiments, FNUS maintained a set of parameter
settings, while MCS had different sets of parameter settings.
The return losses corresponding to five kinds of initial points
were generally poor, so the experiments were representative.
As in the previous experiments, each dataset was used to train
the model five times, and the same set of S-matrices was
applied for testing. The average numbers of successful tunings
n̄c for all datasets are summarized in TABLE VI.

Across all five initial GPs, FNUS consistently achieves
a higher average number of successful tunings than MCS,
while using fewer or comparable samples. Specifically, with
a similar number of samples, FNUS obtains better results,
demonstrating that the samples it collects are of higher quality
and more informative for modeling. Even when MCS collects
nearly twice as many samples, its numbers of successful
tunings approach that of FNUS. These clearly confirm that
FNUS is more efficient and provides higher tuning accuracy,
thereby validating its effectiveness. In addition, FNUS also
shows stable performance across different initial GPs. In
contrast, MCS is highly sensitive to both the sampling range
and the initial GPs, leading to larger fluctuations in n̄c (from
3.6 to 8.8). This indicates that FNUS is less dependent on
parameter setting and initial GPs, thereby exhibiting stronger
robustness in practical tuning scenarios.

In summary, the proposed FNUS method demonstrates a
strong capability to efficiently collect high-quality samples
under uncertain initial GPs. This enables the construction of a
more accurate IDMM with significantly lower sampling cost,
thereby validating the practical effectiveness of FNUS in real-
world tuning applications.

V. CONCLUSION

This paper presents an adaptive and efficient fuzzy non-
uniform sampling method for building IDMM to tune MFs
with individual difference. By introducing FLS, the proposed
method effectively addresses the challenges posed by uncertain
initial positions. The designed CRI and FAI mechanisms
enable non-uniform data acquisition by dynamically adjusting
the sampling step-size based on sample quality and local
sensitivity, resulting in more high-quality samples and fewer
low-quality ones. Additionally, the dataset quality is further

improved through enhancement strategies that solve the short-
comings of similarity and single-sided distribution of samples.
The simulation results illustrated that FNUS had a higher
sampling efficiency compared to either the uniform sampling
method or the non-uniform sampling methods. Meanwhile,
FNUS showed greater adaptability to MFs with various initial
GPs, compared to sampling methods that require more set-
tings. Furthermore, physical experiments further confirm its
practical applicability in real-world tuning tasks.

Importantly, this study showcases a novel application of
FLS in the design of sampling strategies. By leveraging
the uncertainty-handling capability of FLS, FNUS adaptively
selects informative samples, without relying on large-scale
data or predefined sampling distribution. Accordingly, FNUS
holds substantial potential for the applicability expansion into
various fields where existing the similar sampling problem.
Therefore, extending FNUS to broader domains is a valuable
research direction. Additionally, leveraging the collected sam-
ples to construct accurate IDMMs is worthwhile.
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