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Abstract—This paper is concerned with the guidance and con-
trol design for a swarm of multiple under-actuated autonomous
surface vehicles subject to unmeasured velocities of neighbors,
system uncertainties and ocean disturbances. A robust distribut-
ed guidance and predictive control architecture is presented
to achieve a desired formation along a parameterized path.
Specifically, a robust distributed constant bearing guidance law
is designed based on extended state observers. Then, optimized
surge speed and heading controllers are designed based on finite-
set model predictive control for selecting optimal actions within
finite control sets and extended state observers for recovering the
unmeasured yaw rate and unknown model. Simulation results
demonstrate the effectiveness of the proposed robust distribut-
ed cooperative guidance and control methods for path-guided
formation maneuvering of multiple under-actuated autonomous
surface vehicles.

Index Terms—Autonomous surface vehicles, distributed co-
operative guidance, extended state observer, finite-set model
predictive control

I. INTRODUCTION

In recent years, formation control of multiple autonomous

surface vehicles (ASVs) has drawn compelling interests and
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a large number of formation control methods are available

[1]–[14], ranging from leader-follower approach [15], [16],

behavior approach, potential functions [3], and graph-based

mechanism [1]–[9]. In particular, graph-based distributed for-

mation control methods has been well studied. Distributed

formation control of fully-actuated ASVs based on local

information of neighboring vehicles has been presented in [1]–

[3], [7]. In [8], a path-guided time-varying formation controller

with the capability of collision avoidance and connectivity

maintenance is proposed for each ASV. In [9], a path-guided

distributed containment controller is proposed for each ASV

guided by multiple virtual leaders. The limitations are stated

as follows. Firstly, the velocities of neighbours and formation

derivations are required at the kinematic level. Secondly, the

kinetic control law may not lead to optimal performance in

the presence of input constraints.

Motivated by the above observations, this paper aims to ad-

dress the cooperative guidance and control of multiple under-

actuated ASVs subject to unmeasured velocities of neighbors,

internal model uncertainties and external disturbances. The

group is guided by a parameterized path which is known in

advance. A robust distributed guidance and predictive control

architecture is presented to achieve a desired formation along

the parameterized path. More specifically, a robust distribut-

ed constant bearing guidance law is designed based on an

extended state observer (ESO). At the control loop, robust

predictive surge speed and heading controllers are designed

under the assumption that the total disturbance is invariant

in the prediction horizon. The optimal actions within finite

control sets are selected based on finite-set model predictive

control (FS-MPC). The effectiveness of the proposed robust
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distributed guidance and predictive control scheme is verified

via simulations.

II. PRELIMINARIES AND PROBLEM DESCRIPTION

A. Basic concepts and results in graph theory

A weighted directed graph is denoted by G = {V, E ,A}
with a node set V = {n1, n2, ..., nN}. The set E = {(ni, nj) ∈
V × V} is an edge set, (ni, nj) denotes that i-th ASV

sends information to j-th ASV (i �= j). A adjacency matrix

A = [aij] ∈ �N×N with nonnegative elements aij shows

communication links between vehicles. If (nj , ni) ∈ E ,

aij = 1; otherwise, aij = 0. The Laplacian matrix of G is

defined as L = D−A where D is called a degree matrix of G
with D = diag{d1, d2, ..., dN} ∈ �N×N with di =

∑N
j=1 aij,

i = 1, ..., N .

Assumption 1. The graph G contains a spanning tree with

the root node being the node n0.

B. Problem description

Consider a system consisting of N ASVs with a three

degrees of freedom model as⎧⎪⎨
⎪⎩
ẋi = ui cos(ψi)− vi sin(ψi),

ẏi = ui sin(ψi) + vi cos(ψi),

ψ̇i = ri,

(1)

and ⎧⎪⎨
⎪⎩
miuu̇i = fiu(ui, vi, ri) + τiu + τiwu(t),

miv v̇i = fiv(ui, vi, ri) + τiwv(t),

mir ṙi = fir(ui, vi, ri) + τir + τiwr(t),

(2)

where (xi, yi) denotes the position of i-th ASV along XE

and YE axis, ψi denotes the heading angle in the earth-fixed

reference frame {E}; ui,vi and ri denote the surge speed,

sway speed and angular rate in the body-fixed reference frame

{B}, respectively; miu,miv and mir denote the inertia terms;

fiu(·), fiv(·) and fir(·) are nonlinear functions of model

uncertainties; τiu and τir are control input of ASVs; τiwu,

τiwv and τiwr are the ocean disturbances.

Consider a virtual leader moving along a parameterized path

p0(θ) = [x0(θ), y0(θ)]
T ∈ �2, where θ ∈ � is a path variable;

p0(θ) is the position of virture leader.

A geometrical illustration of the path-guided formation

control is shown in Fig.1. The control objective is to achieve

a distributed formation control of multiple ASVs guided by

the parameterized path with constrained control inputs.

III. DISTRIBUTED COOPERATIVE GUIDANCE LAW DESIGN

This section presents the guidance law design for tracking

a parameterized path with the fixed formation.

( )

( )

( )

Fig. 1. Path-guided distributed formation control of ASVs

A. Guidance law design

At first, a formation position error of i-th ASV based on

the information of neighbors is defined as

zi =
∑N

j=1aij(pi − pj − pijd)

+ ai0(pi − p0(θ)− pi0d), (3)

where pi, pj are the position of i-th ASV and j-th ASV; pijd =
pid − pjd is a relative deviation with pid, pjd ∈ �2 being the

position deviation relative to a reference path.

Taking the time derivative of zi along (1), it follows that

żi =di

[
ui cos(ψi)− vi sin(ψi)
ui sin(ψi) + vi cos(ψi)

]
−∑N

j=1aijR
T
j (ψj)

[
uj

vj

]
− ai0p

θ
0(θ)θ̇ − diṗijd, (4)

where di =
∑N

j=0aij ; Rj(ψj) is a rotation matrix given as

Rj(ψj) =

[
cos(ψj) − sin(ψj)
sin(ψj) cos(ψj)

]
.

Defining θ̇ = vs − � with vs is a desired path update

velocity; � is a variable will be designed subsequently; (4)

can be converted to a compact form as follows

żi =di[ui cos(ψi), ui sin(ψi)]
T − ai0p

θ
0(θ)(vs −�)

+ σi, (5)

where σi = −∑N
j=1aijR

T
j (ψj)[uj , vj ]

T − diṗijd +

di[−vi sin(ψi), vi cos(ψi)]
T .

An ESO is used to estimate σi as follows⎧⎪⎪⎨
⎪⎪⎩

˙̂zi = di

[
ui cos(ψi)
ui sin(ψi)

]
− ai0p

θ
0(θ)(vs −�) + σ̂i

−Ko
1i(ẑi − zi),

˙̂σi = −Ko
2i(ẑi − zi),

(6)

where Ko
1i ∈ �2 and Ko

2i ∈ �2 are the observer gain matrices;

ẑi, σ̂i are the estimates of zi, σi, respectively.

Assumption 2. There exists a positive constant σ∗
i such that

‖σ̇i‖ ≤ σ∗
i .

Let z̃i = ẑi − zi and σ̃i = σ̂i − σi, (6) can be expressed as{
˙̃zi = σ̃i −Ko

1i(ẑi − zi),
˙̃σi = −Ko

2i(ẑi − zi)− σ̇i,
(7)
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Defining Ei1 = [z̃Ti , σ̃
T
i ]

T ∈ �4, the equation (7) can be

put into a matrix form as

Ėi1 = AiEi1 −Biσ̇i, (8)

where Ai =

[−Ko
1i 1

−Ko
2i 0

]
, Bi =

[
02
I2

]
.

Because Ai is a Hurwitz matrix, there has a positive definite

matrix Pi1 satisfies the following equation:

AT
i Pi1 + Pi1Ai = −εiI4, (9)

where εi is a positive constant.

A distributed kinematic guidance law is designed as follows

αi =
(
− Kizi√‖zi‖2 +Δ2

i

+ ai0vsp
θ
0(θ)− σ̂i

)
/di, (10)

where αi = [αix, αiy]
T ∈ �2; Ki = diag{ki1, ki2} ∈ �2 is

a kinematic gain matrix, ki1 ∈ � and ki2 ∈ � are positive

constants; Δi ∈ � is a positive constants for avoiding large

virtual control signal during transient; � is updated as follows

�̇ = −λ(� + μ
∑N

i=1ai0(p
θ
0(θ))

T zi), (11)

where λ ∈ � and μ ∈ � are positive constants.

The guidance signals are prescribed as{
ψid =atan2(αix, αiy) + 2kπ,
uid = ‖αi‖ cos(ψid − ψi),

(12)

where k is a positive integral, atan2(αix, αiy) is the four-

quadrant version of arctan(αix/αiy) ∈ (−π/2, π/2).
As a consequence, the error subsystems can be expressed

as follows{
żi = − Kizi√

‖zi‖2+Δ2
i

+ ai0p
θ
0� + ei − σ̃i,

�̇ = −λ(� + μ
∑N

i=1ai0(p
θ
0(θ))

T zi),
(13)

where ei = ui(cosψi, sinψi)
T − uid(cosψid, sinψid)

T . To

move on, the following assumption is needed.

Assumption 3. The tracking error ei is bounded by ‖ei‖ ≤ l∗

with l∗ is a positive constant.

B. Stability analysis

The closed-loop system of kinematic guidance law can be

regarded as a cascade system formed by the observer error

dynamics (8) and the distributed formation error (13). The

following lemmas state the input-to-state stability (ISS) of the

subsystems (8) and (13).

Lemma 1. If Assumption 1 and 2 are satisfied, the system

(8) viewed as a system with the state vector being Ei1 and

the input vector being σ̇i is ISS.

Proof. Consider a Lyapunov function

Vio =
1

2
ET

i1Pi1Ei1, (14)

Taking the time derivative of Vio along (8), it follows that:

V̇io ≤ −εi
2
‖Ei1‖2 + ‖Ei1‖‖Pi1Bi‖‖σ̇i‖,

When Ei1 satisfies

‖Ei1‖ ≥ 2‖Pi1Bi‖‖σ̇i‖
εiθ̄i1

, (15)

it renders V̇io ≤ − εi
2 (1 − θ̄i1)‖Ei1‖2, where 0 < θ̄i1 < 1, it

can be concluded that the subsystem (8) is ISS. Then there

exists a class KL function γi1 and a class K∞ function κi1

as follow, ‖Ei1(t)‖ ≤ γi1(‖Ei1(0)‖, t) + κi1(‖σ̇i‖).
Lemma 2. If Assumption 3 is satisfied, the subsystem (13),

viewed as a system with the states being zi, � and the input

being ei, σ̃i is ISS.

Proof. Construct a Lyapunov function as

V1 =
1

2

∑N
i=1z

T
i zi +

�2

2λμ
, (16)

By differentiating V1 along (13), it follows that

V̇1 =
∑N

i=1(−zTi K
′
izi + zTi ei − zTi σ̃i)− �2

μ
, (17)

where K
′
i = Ki/

√‖zi‖2 +Δ2
i .

Then, (17) can be rewritten as

V̇1 ≤ −c‖E1‖2 + ‖E1‖{
∑N

i=1(‖ei‖+ ‖σ̃i‖)}, (18)

where E1 = [zT , �]T with z = [zT1 , ..., z
T
N ] and c =

mini=1,...N{λmin(K
′
i),

1
μ}.

As ‖E1‖ ≥ ∑N
i=1(‖ei‖+‖σ̃i‖)/cθ̄1, it renders V̇1 ≤ −c(1−

θ̄1)‖E1‖2, where 0 < θ̄1 < 1, it can be concluded that the

subsystem (13) is ISS, and the ultimate bound is given by

‖E1(t)‖ ≤ max{‖E1(t0)‖e−c(1−θ̄1)(t−t0),

(
∑N

i=1(‖ei‖+ ‖σ̃i‖)/cθ̄1)}. (19)

Theorem 1. Under Assumptions 1-3, consider the ESO (6),

the guidance law (10), and the path update law (11), the

closed-loop system cascaded by the subsystem (8) and (13)

is ISS.

Proof. Lemmas 1 and 2 have shown that the subsystem

(8) with states Ei1 and input vector being σ̇i is ISS, and the

subsystem (13) with states zi, � and input vector being ei and

σ̃i is ISS. As a result, the cascade system with states z̃i, zi,
� and exogenous input σ̇i, ei, σ̃i is ISS. There exist a class

KL function γ1 and two class K∞ function κ1, κ2 as follow,

‖E2(t)‖ ≤ γ1(‖E2(0)‖, t) +
∑N

i=1(κ1‖σ̇i‖+ κ2‖ei‖), where

E2 = [z̃T , zT , �]T . The proof is complete.

IV. PREDICTIVE SPEED AND HEADING CONTROL

This section presents the predictive speed and heading

controller design.

A. Extended state observers

The heading and speed dynamics from (2) are⎧⎨
⎩

u̇i = ζiu + biuτiu,

ψ̇i = ri,
ṙi = ζir + birτir,

(20)

where biu = 1/miu, bir = 1/mir; ζiu = [fiu(ui, vi, ri) +
τiwu(t)]/miu; ζir = [fir(ui, vi, ri) + τiwr(t)]/mir.

237Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 02,2023 at 15:11:45 UTC from IEEE Xplore.  Restrictions apply. 



Two ESOs are used for estimating the unknown states,

system uncertainties and disturbances as follows{
˙̂ui = ζ̂iu + biuτiu − 2ωi1(ûi − ui),
˙̂
ζiu = −ω2

i1(ûi − ui),
(21)

and ⎧⎪⎨
⎪⎩

˙̂
ψi = r̂i − 3ωi2(ψ̂i − ψi),
˙̂ri = ζ̂ir + birτir − 3ω2

i2(ψ̂i − ψi),
˙̂
ζir = −ω3

i2(ψ̂i − ψi),

(22)

where ωi1 ∈ � and ωi2 ∈ � are parameters; ûi, r̂i, ψ̂i, ζ̂iu,

and ζ̂ir are estimates of ui, ri, ψi, ζiu, and ζir, respectively.

B. Finite-set model predictive speed controller

By using Euler discretization and the estimated information

in (21), a prediction model of speed dynamics is given as

ûi(k + 1) = ûi(k) + Tis(ζ̂iu + biuτiu(k)), (23)

where τiu(k), ûi(k) denote the surge force and estimates of

surge speed at k-th step; Tis is sampling time.

In order to track the speed reference uid given by the

kinematic guidance law, a cost function is given

Jiu =
∑Np

i=1ρiu‖ûi(k + l|k)− uid(k + l)‖2
+
∑Nc−1

i=0 βiu‖τiu(k + l)‖2, (24)

where Np and Nc are the prediction horizon and the control

horizon, respectively; ûi(k + l|k) is the l-th predicted output

speed at k-th step; uid(k + l), τiu(k + l) denote the defined

speed and control input at k-th step; ρiu ∈ � and βiu ∈ � are

control parameters.

The optimal control input τiu can be selected if the opti-

mization problem can be solved:{
τ
(k)
iu =argminJiu(ûi, uid, τiu),

s.t.ûi(k + 1) = ûi(k) + Tis(ζ̂iu + biuτiu(k)),
(25)

where τ
(k)
iu = {τ̂iu(k), ...τ̂iu(k+Nc−1)} is the optimal finite

sets of τiu at k-th step. Only the first action τ̂iu(k) is applied.

C. Finite-set model predictive heading controller

By using Euler concretization and the estimated information

in (22), a prediction model of heading dynamics is given as{
ψ̂i(k + 1) = ψ̂i(k) + Tisr̂i(k + 1),

r̂i(k + 1) = r̂i(k) + Tis(ζ̂ir + birτir(k)),
(26)

where τir(k), ψ̂i(k) and r̂i(k) denote the yaw moment,

estimates of heading and angular rates at k-th step.

A cost function is designed as follows

Jiψ =
∑Np

i=1ρiψ‖ψ̂i(k + l|k)− ψid(k + l)‖2
+

∑Nc−1
i=0 βiψ‖τir(k + l)‖2, (27)

where ψ̂i(k + l|k) is the l-th predicted output heading at k-

th step; ψid(k+ l), τir(k+ l) denote the defined heading and

control torque; ρiψ ∈ � and βiψ ∈ � are optimization weights.

As a result, the optimal control torque can be obtained as⎧⎪⎨
⎪⎩

τ
(k)
ir =argminJir(ψ̂i, ψid, τir),

s.t.ψ̂i(k + 1) = ψ̂i(k) + Tisr̂i(k + 1),

r̂i(k + 1) = r̂i(k) + Tis(ζ̂ir + birτir(k)),

(28)

where τ
(k)
ir = {τ̂ir(k), ...τ̂ir(k+Nc− 1)} is the optimal finite

sets of τir at k-th step, only the first part τ̂ir(k) is executed.

V. SIMULATION RESULTS

Consider a network system consisting of five ASVs and

one virtual leader. The communication graph of the network

system can be found in Fig.2. The virtual leader is set to move

along a parameterized path p0(θ) = [0.06θ + 3, 0.06θ + 3]T .

The formation pattern is set to p1d = [0, 0]T , p2d = [−5, 5]T ,

p3d = [5,−5]T , p4d = [−5, 5]T , p5d = [5,−5]T . The

parameters for the proposed guidance law are set to Ki =
diag{0.35,0.35}, λ = 10, μ = 10, Δi = 1, Ko

1i =
diag{60,60} and Ko

2i = diag{900,900}. The parameters

of the model predictive speed and heading controllers

are set to ωi1 = 5, ωi2 = 10, ρiu = 1, βiu = 0,

ρiψ = 1, βiψ = 0 and Tis = 0.07, the set of all τiu=

{0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5,
9, 9.5, 10}, and the set of torque τir are selected as

{−5,−4.5,−4,−3.5,−3,−2.5,−2,−1.5,−1,−0.5, 0, 0.5, 1,
1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}.

Simulation results are as shown in Fig.3-6. Fig.3 depicts

the unmeasured speeds of neighboring ASVs can be estimated

accurately. The errors of five ASVs in x-axis and y-axis are

given in Fig.4. It can be seen the errors converge to a neigh-

borhood of the zero. Fig.5 depicts the tracking performance

of the predictive surge and heading controllers. Finally, Fig.6

shows the control input of ASV1.

0

14 2 3 5

Fig. 2. Communication graph.
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Fig. 3. The speed correlation estimation of neighbor about ASV1.
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VI. CONCLUSIONS

This paper addressed the integrated distributed guidance and

control for multiple under-actuated ASVs guided by a param-

eterized path. Each ASV subjects to unmeasured velocities

of neighbors, system uncertainties and ocean disturbances. A

robust distributed guidance and predictive control architecture

is proposed. In the guidance loop, a robust distributed constant

bearing guidance law is developed based on ESOs. In the

control loop, predictive surge speed and heading controllers

are designed where optimal actions are selected based on

finite control sets and extended state observers. Simulation

results demonstrate the effectiveness of the proposed robust

distributed guidance and predictive control methods.
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Fig. 4. Tracking errors of five ASVs in x-axis and y-axis.
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Fig. 5. Tracking performance of ASV1 using the linear heading ESO.
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