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Abstract: This paper investigates a distributed containment control problem of multiple autonomous surface vehicles (ASVs)
in the presence of internal and external disturbances. Considering some ASVs with individual tasks, a noncooperative game-
based control scheme is developed to achieve the containment behavior of multiple ASVs. To deal with the internal and external
disturbances, we design an improved extended state observer (IESO). Using the Nash equilibrium seeking strategy, an IESO-
based noncooperative containment controller is presented. It is proved that the closed-loop system is input-to-state stable, and
position and heading of all ASVs converge to the Nash equilibrium as far as possible. Finally, simulation results are given to
demonstrate the effectiveness of proposed scheme.
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1 Introduction

Inspired by the natural biological swarm, the coopera-
tive behavior of autonomous surface vehicles (ASVs) has
attracted increasing attention and interest from research in-
stitutes and communities [1–6]. The cooperative control ar-
chitecture of ASVs is divided into the centralized control,
decentralized control, and distributed control [7]. In the dis-
tributed architecture, the local control law is used for each
subsystem without relying on global information [8–10]. A
typical distributed architecture is the containment control
separated into containment tracking [11–13] and contain-
ment maneuvering [14–16]. In particular, containment track-
ing control aims to form a convex shape of multiple ASVs
guided by multiple virtual leaders.

On the one hand, these containment control methods in
[11–14, 16, 17] mainly concern how to establish the de-
sired collaborative behavior via the local cooperation among
ASVs. It is noted that there may exist a competition rela-
tionship among ASVs besides cooperation in practice. The
competition means that some ASVs have individual tasks,
which will result in challenges for the implementation of
group tasks. Noncooperative game theory is an effective tool
to handle the conflict of multiple ASVs in competition and
cooperation. Based on the noncooperative game, an appre-
ciative decision can be made for every ASV with the Nash
equilibrium (NE) seeking strategy [18]. Up to now, there
are some NE seeking results for consensus control of mul-
tiple ASVs (see [19–22]). It is found that [19–22] consider
the NE seeking for a group of ASVs guided by one leader.
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There is seldom the NE seeking result of ASVs guided by
multiple leaders.

On the other hand, the dynamics of ASVs are subject to
modeling errors, unmodeled terms, and environmental dis-
turbances in practice. References [19, 20] designed the static
formation controller with known ASV’s kinetics. In [21, 22],
environmental disturbances are considered and recovered by
constructing the neural predictors or data-driven observers.
Motivated by the above discussion, the main highlights of
this paper are given as follows: 1) To deal with unknown
disturbances for ASVs, an improved extended state observer
(IESO) is presented to overcome the chattering of compen-
sated controller; 2) An IESO-based noncooperative contain-
ment control scheme is developed for multiple ASVs by us-
ing the NE seeking strategy, which can achieve the balance
between the individual and group objectives.

2 Preliminaries and Problem Formulation

2.1 Notation
The Euclidean norm is denoted by ‖ · ‖. λmin(·) and

λmax(·) are minimum and maximum eigenvalues of a ma-
trix. An m-dimensional zero vector and an m × n dimen-
sional zero matrix are represented by 0m and 0m×n. col(·)
and diag(·) represent a column vector and a diagonal matrix,
respectively. ⊗ is the Kronecker Product.

2.2 Graph theory
A graph G = {V, E} is used to describe the communi-

cation topology. V = {VF ,VL} is a node set of M fol-
lower nodes and N −M leader nodes. E denotes an edge set
E = {(i, j) ∈ V × V}, where the node pairs (i, j) stands for
a transformation path from node i to node j with a weight
aij = 1 or aij = 0. If aij = aji, the graph is called an undi-
rected graph. A square matrix A = [aij ] ∈ <N×N is an ad-
jacency matrix of graph G. An in-degree matrix D ∈ <N×N
is given with diagonal element

∑
j∈V aij . Then, a Laplacian

matrix L ∈ <N×N is presented by L = D −A.



2.3 Problem Formulation
In this paper, we consider the noncooperative game-based

containment control ofM ASVs andN −M virtual leaders.
In the containment, virtual leaders span a hull to coordinate
the motions of multiple ASVs. The action of each ASV is
given by

η̇i = Ri(ψi)νi,

Miν̇i +Ci(νi)νi +Di(νi)νi = τi + τiω,
(1)

where i = 1, . . . ,M . ηi = [xi, yi, ψi]
T ∈ <3 denotes a

position and yaw angle in the earth-fixed reference frame.
νi = [ui, vi, ri]

T ∈ <3 is a velocity vector in the body-
fixed reference frame. Mi = MT

i ∈ <3×3, Ci(νi) =
−CT

i (νi) ∈ <3×3, andDi(νi) ∈ <3×3 represent an inertial
mass matrix, a Coriolis/centripetal matrix, and a damping
matrix, respectively. τi ∈ <3 is the actual control input.
τiω ∈ <3 denotes the disturbance vector. Ri(ψi) is a rota-
tion matrix described by

Ri(ψi) = Ri =

 cosψi − sinψi 0
sinψi cosψi 0

0 0 1

 .
In this paper, ASVs are viewed as a group of players that

built a set defined as VF = {1, 2, ...,M}. For a noncoop-
erative game, each player intends to minimize its objective
function fi(ηF ) : <3M → <, i.e.

min
ηi∈<3

fi(ηF )

subject to (1)
(2)

where ηF = col(ηi), i ∈ VF . It is seen that fi(ηF ) is de-
pended on the actions of the ith player and its neighbors in
the considered game. Then, the ith player can adjust its ac-
tion ηi to minimize the function fi(ηF ). Thus, an action
profile η∗F = (η∗i ,η

∗
−i) is given and called as a Nash equi-

librium if for ηi ∈ <3,

fi(ηi,η
∗
−i) ≥ fi(η∗i ,η∗−i), i ∈ VF (3)

with η∗−1 = [η∗T1 , ...,η∗Ti−1,η
∗T
i+1,η

∗T
M ]T . In addition, if

fi(ηF ) is convex and continuous, there is a Nash equilib-
rium of noncooperative game such that ∂Ji(η∗F )/∂ηi = 03.

This paper aims to develop the controller to achieve a con-
tainment behavior of multiple ASVs guided by virtual lead-
ers. In the noncooperative game, each ASV intends to com-
plete the following objectives:

Objective1: min Σj∈NiF
aij‖ηi − ηj‖2, (4)

Objective2: min Σk∈NiL
aik‖ηi − ηkd‖2, (5)

where ηkd = [xkd, ykd, ψkd] ∈ <3, k ∈ VL with ψkd =
atan2(ẏkd, ẋkd) denotes the desired reference trajectory.
Note that some ASVs intend to minimize the containment er-
rors with their neighboring ASVs and virtual leaders. In the
upcoming section, the following assumptions will be needed.

Assumption 1: The graph for ASVs and virtual leaders is
undirected and connected. There exists at least one ASV
accessing the information of virtual leaders.

Assumption 2: The given trajectory ηkd and its deriva-
tives η̇kd and η̈kd are bounded and satisfied with ‖ηkd‖ ≤
ε1 ∈ <+, ‖η̇kd‖ ≤ ε2 ∈ <+, and ‖η̈kd‖ ≤ ε3 ∈ <+.

3 Main Results

In this section, we consider a noncooperative game-based
containment control of multiple ASVs subject to unknown
internal uncertainties and external disturbances.

3.1 Improved Extended State Observer Design
To facilitate to the subsequent strategy design, define

σi(νi) = M−1
i (−Ci(νi)νi − Di(νi)νi + τiω). Then, it

yields the dynamics of the ith ASV’s action as follows:
η̇i = R(ψi)νi,

ν̇i = zi +M−1
i τi,

żi = σ̇i

(6)

with zi = σi(νi) being regarded as an extended state.
For ASVs with the measurable velocity νi, a second-order

IESO is derived to estimate the unavailable zi
ν̃i = ν̂i − νi,
˙̂νi = −li1tanh(ν̃i) + ẑi(νi) +M−1

i τi,
˙̂zi = −li2tanh(ν̃i),

(7)

where ν̂i and ẑi represent the estimations of νi and zi, re-
spectively. ν̃i represents the velocity estimation error. li1 ∈
<+ and li2 ∈ <+ are observer coefficients. tanh(ν̃i) =
col(tanh(ν̃ij)),j=u,v,r is a smooth function vector with

tanh(ν̃ij) =

b0
ec0|ν̃ij | − e−c0|ν̃ij |

ec0|ν̃ij | + e−c0|ν̃ij |
ν̃ij
|ν̃ij |

, ν̃ij 6= 0,

ν̃ij , ν̃ij = 0,

where b0 and c0 are positive constants.
Define a positive vector ζi = diag{ζij},j=u,v,r with

ζij =

b0 e
c0|ν̃ij | − e−c0|ν̃ij |

ec0|ν̃ij | + e−c0|ν̃ij |
|ν̃−1ij |, ν̃ij 6= 0,

1, ν̃ij = 0.
(8)

Then, IESO (7) using (8) can be rewritten as follows{
˙̂νi = −li1ζiν̃i + ẑi +M−1

i τi,
˙̂zi = −li2ζiν̃i.

(9)

Integrating (6) and (9), it obtains the dynamics of esti-
mated errors as follows{

˙̃νi = −li1ζiν̃i + z̃i,
˙̃zi = −li2ζiν̃i − żi

(10)

with z̃i = ẑi − zi.
Letting Ei1 = [ν̃Ti , z̃

T
i ]T , it follows from (10)

Ėi1 = Ai1Ei1 −Bi1żi, (11)

whereAi1 =

[
−li1ζi I3
−li2ζi 03×3

]
, Bi1 =

[
03×3
I3

]
.

Since ζij > 0 from definition in (8), it gets that Ai1 is a
Hurwitz matrix. Then, there exists a matrix Pi1 = P T

i1 > 0
such that

AT
i1Pi1 + Pi1Ai1 = −I6. (12)

Assumption 3: The derivative of σi is bounded and satis-
fied with ‖σ̇i‖ ≤ σ∗ ∈ <+.

Lemma 1 ([23]): Under Assumption 3, the subsystem
(11) is stable and estimated errors are bounded.



3.2 Noncooperative Containment Controller Design
In the previous section, the unknown disturbance of ASVs

can be recovered using designed IESO. This will develop
an IESO-based noncooperative containment controller for
ASVs in the presence of internal and external disturbances.

This paper considers a noncooperative game for contain-
ment tracking ofM ASVs guided byN −M virtual leaders.
First, an objective function fi including the individual task
and swarm task is defined as

fi(ηF ) =

1

2

∑
j∈NiF

aij‖ηi − ηj‖2 +
1

2

∑
k∈NiL

aik‖ηi − ηkd‖2. (13)

According to (13), it takes the partial derivative of fi(ηF )
with respect to ηi as

∇i(ηF ) =
∂fi(ηF )

∂ηi

=
∑
j∈NiF

aij(ηi − ηj) +
∑
k∈NiL

aik(ηi − ηkd).
(14)

Denoting ∇(ηF ) = col(∇i(ηF )), i ∈ VF , it follows
from (14)

∇(ηF ) = (L1 ⊗ I3)ηF + (L2 ⊗ I3)ηL, (15)

where ηL = col(ηkd), k ∈ VL; L1 = D1 − A1 and
L2 = −A2. Noting that D1 is a diagonal matrix with posi-
tive diagonal elements, and A1 is a non-negative symmetric
matrix with diagonal elements being 0. Then, it gets that L1

is a nonsingular M-matrix. Therefore, it renders there exists
a M ×M diagonal matrix P2 = diag(p21, . . . , p2M ) with
p2i > 0, i ∈ VF such that

LT
1 P2 + P2L1 > 0. (16)

Letting ∇(ηF ) = 03M , the Nash equilibrium η∗F of non-
cooperative game for containment (13) is presented as below

η∗F =− [L−11 L2 ⊗ I3]ηL. (17)

To seek the Nash Equilibrium of objective function (13)
for multiple ASVs, an IESO-based noncooperative contain-
ment controller is derived as

τi =− kiMiR
T
i [Riνi + `iη̇L + ∇i(ηF )]

−MiR
T
i Ṙiνi −Miẑi,

(18)

where `i ∈ <3×3(N−M) is the ith row vector of L−11 L2 ⊗
I3 satisfying [`T1 , ..., `M ]T = L−11 L2 ⊗ I3. ki denotes the
designed control gain.

For clarify, we define the column vectors
νF = col(νi), i ∈ VF , τF = col(τi), i ∈ VF ,
ẑF = col(ẑi), i ∈ VF , z̃F = col(z̃i), i ∈ VF , and
the block diagonal matrices RF = diag(Ri), i ∈ VF ,
MF = diag(Mi), i ∈ VF , K = diag(ki), i ∈ VF . Based
on the designed IESO (7) and controller (18), one has

η̇F = RFνF ,

ν̇F = −RT
FK[RFνF + (L−11 L2 ⊗ I3)η̇L

+ ∇(ηF )]−RT
F ṘFνF − z̃F .

(19)

3.3 Convergence Analysis
In the previous subsections, it derived the IESO-based

noncooperative containment controller for ASVs subject to
unknown disturbances. In the forthcoming, the convergence
results is given by the following theorem.

Theorem 1: Consider the noncooperative game (4) and
(5) described by multiple ASVs with the action dynamics
(1), the IESO (7), and the noncooperative containment con-
troller (18). Under Assumptions 1-3, the closed-loop system
is input-to-state stable, and the states of ASVs converge to
the neighborhood of the time-varying NE solutions.

Proof: Construct a Lyapunov function candidate V as

V = V1 + V2, (20)

V1 = (ηF − η∗F )T (P2 ⊗ I3)(ηF − η∗F ), (21)

V2 =
1

2
‖RFνF + (L−11 L2 ⊗ I3)η̇L + ∇(ηF )‖2. (22)

By differentiating V1 along (19) and substituting ∇(ηF )
and ∇(η∗F ), it follows

V̇1 = (ηF − η∗F )T (P2 ⊗ I3)[RFνF + (L−11 L2 ⊗ I3)η̇L]

+ [RFνF + (L−11 L2 ⊗ I3)η̇L]T (P2 ⊗ I3)(ηF − η∗F )

= (ηF − η∗F )T (P2 ⊗ I3)[RFνF + (L−11 L2 ⊗ I3)η̇L

+ ∇(ηF )] + [RFνF + (L−11 L2 ⊗ I3)η̇L + ∇(ηF )]T

× (P2 ⊗ I3)(ηF − η∗F )

− (ηF − η∗F )T (P2 ⊗ I3)[∇(ηF )−∇(η∗F )]

− [∇(ηF )−∇(η∗F )]T (P2 ⊗ I3)(ηF − η∗F ). (23)

Note that we have ∇(ηF ) −∇(η∗F ) = (L1 ⊗ I3)(ηF −
η∗F ) by (19) and (17). Thus, it yields

− (ηF − η∗F )T (P2 ⊗ I3)[∇(ηF )−∇(η∗F )]

− [∇(ηF )−∇(η∗F )]T (P2 ⊗ I3)(ηF − η∗F )

=− (ηF − η∗F )T [(P2L1 + LT
1 P2)⊗ I3](ηF − η∗F )

≤− γ1‖ηF − η∗F ‖2, (24)

with γ1 = λmin(PL1 + LT
1 P ).

Further, we have

V̇1 ≤ −γ1‖ηF − η∗F ‖2 + 2λmax(P2)‖ηF − η∗F ‖
× ‖RFνF + (L−11 L2 ⊗ I3)η̇L + ∇(ηF )‖.

(25)

Then, we proceed to calculate the derivative of V2. Inte-
grating (15) and (19), V̇2 is presented as follows

V̇2 = −λmin(K)‖RFνF + (L−11 L2 ⊗ I3)η̇L + ∇(ηF )‖2

+ [RFνF + (L−11 L2 ⊗ I3)η̇L + ∇(ηF )]T

× [(L1 ⊗ I3)RFνF + (L2 ⊗ I3)η̇L

+ (L−11 L2 ⊗ I3)η̈L −RF z̃F ]. (26)

From Lemma 1, it gets ‖z̃i‖ ≤ σ∗ ∈ <+. Under Assump-



tions 1-3, the following inequalities can be obtained

[RFνF + (L−11 L2 ⊗ I3)η̇L + ∇(ηF )]T

×[(L−11 L2 ⊗ I3)η̈L −RF z̃F ]

≤‖RFνF + (L−11 L2 ⊗ I3)η̇L + ∇(ηF )‖
×
[
‖(L−11 L2 ⊗ I3)η̈L‖+ ‖z̃F ‖

]
≤‖RFνF + (L−11 L2 ⊗ I3)η̇L + ∇(ηF )‖

×(
√
N −Mε3 +

√
Mσ∗).

(27)

Similarly, using ∇(ηF )−∇(η∗F ) = (L1⊗I3)(ηF−η∗F ),
one has

V̇2 = −(λmin(K)−$)‖RFνF + (L−11 L2 ⊗ I3)η̇L

+ ∇(ηF )‖2 +$2‖ηF − η∗F ‖‖RFνF + ∇(ηF )

+ (L−11 L2 ⊗ I3)η̇L‖+ (
√
N −Mε3 +

√
Mσ∗)

× ‖RFνF + (L−11 L2 ⊗ I3)η̇L + ∇(ηF )‖ (28)

with $ = ‖L1 ⊗ I3‖.
Based on the above results (24) and (28), the derivative of

V is given as

V̇ = V̇1 + V̇2

≤ −γ1‖ηF − η∗F ‖2 − (λmin(K)−$)‖RFνF

+ (L−11 L2 ⊗ I3)η̇L + ∇(ηF )‖2 + (2λmax(P2) +$2)

× ‖ηF − η∗F ‖‖RFνF + (L−11 L2 ⊗ I3)η̇L + ∇(ηF )‖

+ (
√
N −Mε3 +

√
Mσ∗)‖RFνF

+ (L−11 L2 ⊗ I3)η̇L + ∇(ηF )‖. (29)

LettingE2 =
[
‖ηF −η∗F ‖, ‖RFνF +(L−11 L2⊗I3)η̇L+

∇(ηF )‖
]T

, one has

V̇ ≤ −ET
2 A2E2 +B2E2 (30)

where

A2 =

 γ1 −λmax(P2) +$2

2

−λmax(P2) +$2

2
λmin(K)−$

 ,
B2 =

[
0√

N −Mε3 +
√
Mσ∗

]
.

For λmin(K) > (λmax(P2) +$2)2/4γ1 +$, it gets that
A2 is positive definite. Then, V̇ satisfies

V̇ ≤ −λmin(A2)‖E2‖2 + ‖B2‖‖E2‖. (31)

Since ‖E2‖ ≥ ‖B2‖/%λmin(A2) with % ∈ <+, it follows

V̇ ≤ −λmin(A2)(1− %)‖E2‖2. (32)

Therefore, it can be concluded that the proposed closed-
loop system is input-to-state stable, and error signals are
bounded.

4 Simulation Results

This section considers the noncooperative containment
control of three ASVs and four virtual leaders. Fig. 1 dis-
plays the communication topology and a desired contain-
ment shape of ASVs and virtual leaders using the presented
IESO-based noncooperative containment control scheme.

3 2

1

5

4
Virtual leaders

ASVs

6

7

Fig. 1: The communication topology and the desired con-
tainment shape.

In [24], the model parameters of ASVs can be found,
and ASVs’ initial states are set at [−50,−50, π/2, 0, 0, 0]T ,
[−60,−50, π/2, 0, 0, 0]T , and [−40,−50, π/2, 0, 0, 0]T ,
successively. The reference trajectories for virtual leaders
are defined by [xkd, ykd] = [−10−0.2t+80 cos(−0.4t/80+
5π/4), 20 + 0.1t+ 80 sin(−0.4t/80 + 5π/4)], k = 4, 7 and
[xkd, ykd] = [−10−0.2(t−50)+80 cos(−0.4(t− 50)/80+
5π/4), 20 + 0.1(t − 50) + 80 sin(−0.4(t− 50)/80 +
5π/4)], k = 5, 6. Other parameters are li1 = 5, li2 = 100,
b0 = 0.5, c0 = 2, and ki = 1.

Simulation results are plotted in Figs. 2-11. Fig. 2 draws
the actual trajectories of ASVs and virtual leaders using pre-
sented method. Figs. 3-5 shows the errors between ASVs’
states and Nash equilibrium solutions. Figs. 6-8 depicts the
actual control inputs. Figs. 9-11 display the estimation pro-
files of designed IESO.
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Fig. 2: The actual trajectories of 3 ASVs.
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Fig. 3: Deviations of xi and x∗i .

5 Conclusion

This paper addressed the problem of distributed contain-
ment control for ASVs in the presence of internal and ex-
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Fig. 4: Deviations of yi and y∗i .
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Fig. 6: The surge control inputs.

ternal disturbances. By considering ASVs with individual
tasks, a noncooperative game-based control scheme was de-
veloped to achieve the desired containment behavior. To
handle the disturbances, an IESO was designed. By em-
ploying a Nash equilibrium seeking strategy, an IESO-based
noncooperative containment controller was presented. The
analysis demonstrated that the closed-loop system is input-
to-state stable, and the position and heading of all ASVs con-
verge to the Nash equilibrium to the greatest extent possible.
The effectiveness of the proposed scheme was illustrated
through simulation results. Overall, this research contributes
to advancing the field of distributed containment control for
ASVs and provides a practical solution for dealing with dis-
turbances in real-world scenarios.
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0 50 100 150 200
-4
-2
0
2

[N
]

<1u <̂1u

0 50 100 150 200
-4
-2
0
2

[N
]

<2u <̂2u

0 50 100 150 200
Time[s]

-4
-2
0
2

[N
]

<3u <̂3u

Fig. 9: Estimation profiles of IESO in the surge direction.
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neuvering, with experiments, for a model ship in a marine
control laboratory,” Automatica, vol. 41, no. 2, pp. 289–298,
Feb. 2005.


