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Abstract. This paper studies a prescribed performance control (PPC)
problem of uncertain nonlinear systems in a multi-input multi-output
Brunovsky form. An observer-based performance-critical control method
is proposed, which is different from existing PPC methods using error
transformation functions (ETFs). At first, a finite-time extended state
observer (FTESO) is designed to identify the nonlinear term. Then,
based on the proposed FTESO, a nominal integral sliding mode controller
is devised without considering user-specified performance indexes. Next,
we construct the input-to-state safe high-order control barrier functions
(ISSf-HOCBFs) for tracking error systems with unknown disturbances.
The performance-critical input constraints are devised by using PPC
constraint-based ISSf-HOCBFs. Later, a modified controller is solved
by the quadratic program unifying nominal controller with performance-
critical input constraints. Finally, it is proved that the closed-loop system
is input-to-state safe by forward invariance analysis, and tracking errors
evolve within prescribed constraints. Finally, a simulation example of an
unmanned surface vehicle is conducted to demonstrate the effectiveness
of the proposed observer-based performance-critical control method.

Keywords: Uncertain multi-input multi-output uncertain nonlinear sys-
tems, finite-time state observer, control barrier function, and prescribed
performance control.

1 INTRODUCTION

In recent years, there has been an increasing focus on the control problem of un-
certain nonlinear systems in multi-input multi-output (MIMO) Brunovsky form,
such as unmanned aerial/surface/underwater vehicles [1–4], robots [5], and ma-
nipulators [6], etc. Due to the extensive range of applications, improving the
control performance has sparked intense interest among both researchers and
communities. In [7], authors firstly proposed the prescribed performance control
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(PPC) technique, which allows the tracking error to evolve under a predefined
convergence rate and maximum overshoot. The PPC methodology can explic-
itly preset the transient and steady-state indices according to specific operating
scenarios. For nonlinear systems subject to internal uncertainties and external
disturbances, there exist some PPC schemes using approximation tools includ-
ing neural networks [8,9], fuzzy logic systems [10,11], and observers [12,13], etc.
In [14], a command filter-based adaptive constrained tracking controller is devel-
oped to guarantee predefined performance under bounded forces. In [5], a vision-
based fixed-time PPC formation controller is presented for wheeled robots with
local relative distance and bearing angle. In [8], an experience-based PPC forma-
tion controller is developed for underactuated vessels by using a cooperative de-
terministic learning protocol. Consider the quantization property under a band-
limited network in [15,16]. For an input-quantized strict-feedback system, [15] de-
signs an improved performance function to achieve finite-time error convergence
without finite-time control protocol. [16] presents a robust performance-adjusted
trajectory tracking method for state-quantized vessels without the aid of prior
knowledge and identified information. It is observed that the PPC schemes of
reviewed works above are implemented based on error transformation functions
(ETFs), which map the original system into an equivalent unconstrained one.

More recently, control barrier functions (CBFs) and high order control bar-
rier functions (HOCBFs) are increasingly applied in safety-critical control fields,
such as adaptive cruise control [17], lane keeping [18], and collision-free forma-
tion [19–22]. The Safety-critical controller is prior to ensuring invariances of a
given set by solving a quadratic program to unify CBFs or HOCBFs with con-
trol Lyapunov functions or performance/stability-based controllers. Further, [23]
proposes an input-to-state safe (ISSf) set for nonlinear systems in the presence
of input disturbances, and an ISSf-CBF is defined for the single affine system,
which has been used to guarantee the formation safety of multiple marine vehi-
cles [24].

Motivated by above discussions, an observer-based performance-critical con-
trol method is developed. The main features include two folds: i) A finite-time
extended state observer (FTESO) is constructed to estimate unknown uncertain-
ties within a finite time. Based on estimated terms, a nominal integral sliding
mode controller is designed to achieve the tracking objective. ii) We develop the
input-to-state safe high-order HOCBFs (ISSf-HOCBFs) for error systems with
unknown disturbances. Then, a performance-critical controller is presented to
ensure ISSf of sets defined by prescribed performance constraints.

2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 Notations

R, R+, Rn, and Rm×m+ represent a real constant set, a positive constant set, a real
n dimensional vector set, and a positive definite m×m dimensional matrix set,
respectively. I1:n denotes a number set with I1:n = {1, ..., n}. diag{·} is a block-
diagonal matrix. col{·} denotes a column vector. A function dxca is defined as
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dxca = |x|a sign(x), 0 < a < 1. ∂C and Int(C) denote the boundary and interior of
a set C, respectively. Considering a system ẋ = f(x) + g(x)u, the Lie derivatives

of a function h(x) is defined as Lfh(x) = ∂h(x)
∂x f(x) and Lgh(x) = ∂h(x)

∂x g(x).
For a strictly increasing continuous function α(·) : (−b, a) 7→ (−∞,∞), it

is an extended class K function denoted as Ke if a, b ∈ R+ and α(0) = 0. For
a strictly increasing continuous function α(·) : (−b, a) 7→ (−∞,∞), it is an
extended class K∞ function denoted as K∞,e if a, b =∞ and α(0) = 0.

2.2 Preliminaries

Definition 1: (Relative degree [25]) The relative degree of a continuously dif-
ferentiable function h(x) : Rn → R for system ẋ = f(x) + g(x)u is the number
of times that h(x) needs to be differentiated along the system dynamics before
the control input u appears explicitly.

Lemma 1: ( [25]) Assume φ(t) : [t0, tf ]→ R is a continuously differentiable

function with initial time t0 and final time tf . If φ̇(t) ≥ α(φ(t)) for all t ∈ [t0, tf ],
where α is a class K function, and φ(t0) ≥ 0, then φ(t) ≥ 0 for all t ∈ [t0, tf ].

2.3 Problem Formulation

Consider a class of uncertain nonlinear systems in MIMO Brunovsky form [26]
ẋ1(t) = x2(t),

ẋ2(t) = ζ(x) + u(t),

y(t) = x1(t),

(1)

where x1 = col(x1j), x2 = col(x2j), u = col(uj), and y = col(yj), j ∈ I1:m
are the system states, the control input, the system output, respectively; ζ(x) :
Rm×Rm → Rm denotes unknown nonlinear smooth function with x = [xT1 , x

T
2 ]T .

It is assumed that its derivative ζ̇ is bounded with ‖ζ̇‖ < ζ∗ ∈ R+.
Define the tracking errors e1 = col(e1j) and e2 = col(e2j), j ∈ I1:m as

e1(t) = x1(t)− x1d(t)−∆1, e2(t) = x2(t)− x2d(t)−∆2. (2)

where ∆1 ∈ Rm and ∆2 ∈ Rm are given deviations; x1d ∈ Rm and x2d ∈ Rm
represent the desired states, which are updated by the following dynamic system{

ẋ1d(t) = x2d(t),

ẋ2d(t) = ud(xd),
(3)

where ud(xd) ∈ Rm is a given continuous function with xd = [xT1d, x
T
2d]

T .
To obtain the user-specified tracking performance, we usually force the sys-

tem output y to track the desired output signal x1d such that{
e1j ≤ (δjr + de1j,0c0)ρj(t)− ρj,∞de1j,0c0,
e1j ≥ −(δjl − de1j,0c0)ρj(t)− ρj,∞de1j,0c0,

(4)
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where e1 = col(e1j), j ∈ I1:m; 0 ≤ δjr, δjl ≤ 1; e1j,0 = e1j(t0); ρj(t) : (t0,∞) →
(ρj,0, ρj,∞) is a monotonically decreasing differentiable function as

ρj(t) = (ρj,0 − ρj,∞)e−σj(t−t0) + ρj,∞, (5)

where σj ∈ R+ is a constant for designing convergence speed; ρj,0 ∈ R+ and
ρj,∞ ∈ R+ are user-specified parameters satisfying ρj,0 > ρj,∞.
Control objectives: In this paper, we aim to develop an observer-based performance-
critical tracking control method for a second-order MIMO Brunovsky system
subject to unknown internal uncertainties. The detailed objectives include two
aspects: 1) ζ(x) can be estimated by using the proposed FTESO within a finite
time; 2) e1 and e2 can converge and evolve within the prescribed performance
constraints by using the proposed observer-based performance-critical tracking
control method.

3 CONTROLLER DESIGN AND ANALYSIS

3.1 Finite-Time Extended State Observer

Before designing the performance-critical controller, we design an FTESO to
estimate unknown terms as follows{

˙̂x2 = −Lo1dx̂2 − x2c
1
2 + ζ̂ + u,

˙̂
ζ = −Lo2dx̂2 − x2c0,

(6)

where x̂2 ∈ Rm and ζ̂ ∈ Rm represent observations of x2 and ζ(x), respectively;
Lo1 ∈ Rm×m+ and Lo2 ∈ Rm×m+ are designed matrices.

Letting x̃2 = x̂2− x2 ∈ Rm and ζ̃ = ζ̂ − ζ ∈ Rm, it yields the error dynamics
of FTESO as {

˙̃x2 = −Lo1dx̃2c
1
2 + ζ̃,

˙̃
ζ = −Lo2dx̃2c0 − ζ̇.

(7)

Under ‖ζ̇‖ < ζ∗, it gets that the finite-time convergence of FTESO error dy-
namics from [27, Theorem 6]. Thus, it is concluded that the observation error ζ̃
is bounded with ‖ζ̃‖ ≤ ι ∈ R+.

3.2 Design and Analysis of Controller

Taking the derivative of (2) along (1) and (3), and substituting ζ̂ into its deriva-
tive, one yields that

ė1 = e2, ė2 = u− ud + ζ̂ − ζ̃. (8)

Then, an integral sliding surface z ∈ Rm is designed as follows

z = e2 +

∫ t

t0

(Lz1e1(θ) + Lz2e2(θ))dθ, (9)
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where Lz1 ∈ Rm×m+ and Lz2 ∈ Rm×m+ are designed parameters matrices.
Differentiating z yields that

ż = ė2 + Lz1e1(t) + Lz2e2(t). (10)

Combining (13) with (9), a nominal controller is derived as follows

unom = −Lcz − Lz1e1 − Lz2e2 − ζ̂ + ud (11)

where Lc ∈ Rm×m+ is a gain matrix.
Substituting (11) into (10), the closed-loop system is written as

ż = −Lcz − ζ̃ + q. (12)

where q = u− unom. The following lemma presents the stability of system (12).
Lemma 2: The system (12) with the state z and inputs ζ̃ and q is input-to-

state stable.
Proof: Construct the following Lyapunov function V = zT z/2. Taking the time
derivative of V with (12), it follows that V̇ = zT (−Lcz − ζ̃ + q).

It renders that V̇ ≤ −λmin(Lc)‖z‖2 + ‖z‖(‖ζ̃‖+ ‖q‖), where λmin(Lc) is the
minimum eigenvalue of Lc. Since ‖z‖ ≥ (‖ζ̃‖ + ‖q‖)/ελmin(Lc) with ε ∈ (0, 1),
it renders V̇ ≤ −(1 − ε)λmin(Lc)‖z‖2. From [25, Lemma 4.6], it concludes that
system (10) is input-to-state stable, and the ultimate bound is expressed as
z(t) ≤ max{‖z(t0)‖e−(1−ε)λmin(L

c)(t−t0), (‖ζ̃‖+ ‖q‖)/ελmin(Lc)}.
After above design and analysis, a nominal controller has been devised to

stabilize (8), which can be viewed as a system with states e1, e2, the input u
with disturbance ζ̃. For the sake of designing performance-critical conditions,
dynamics (8) is usually rewritten as follows[

ė1
ė2

]
︸ ︷︷ ︸
ė∈R2m

=

[
e2

ζ̂ − ud

]
︸ ︷︷ ︸
f∈R2m

+

[
0m
Im

]
︸ ︷︷ ︸
g∈R2m×m

(u+ w),
(13)

where w = −ζ̃ ∈ Rm. From the bounded errors ζ̃, it follows that ‖w‖∞ ≤ ι with
‖w‖∞ , ess supt≥t0 ‖w(t)‖ being the Lm∞ norm.

The inequality constraints (4) can be described by using the set Cjk(ej),k=r,l
with ej = col(e1j , e2j). Then, the set Cjk is expressed as the following form

Cjk = {ej ∈ R2 | hjk(ej) ≥ 0},
∂Cjk = {ej ∈ R2 | hjk(ej) = 0},

Int(Cjk) = {ej ∈ R2 | hjk(ej) > 0},
(14)

where hjk(ej) is a continuously differentiable function built by (4) as follows{
hjr(ej) = (δjr + de1j,0c0)ρj(t)− ρj,∞de1j,0c0 − e1j ,
hjl(ej) = (δjl − de1j,0c0)ρj(t) + ρj,∞de1j,0c0 + e1j .

(15)
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If constraints (4) hold for ∀t ≥ t0, it means that ej always belongs to the
sets Cjk(ej),k=r,l, i.e. ej ∈ ∩lk=rCjk, ∀t ≥ t0.

Assume that hjk(ej) are CBFs for (13). By [28], ensuring the forward invari-
ance of Cjk(ej) yields that uj should respect to the following inequalities:

(δjr + de1j,0c0)ρ̇j − e2j︸ ︷︷ ︸
Lfhjr

+αjr((δjr + de1j,0c0)ρj − ρj,∞de1j,0c0 − e1j)︸ ︷︷ ︸
αjr(hjr)

≥ 0,

(δjl − de1j,0c0)ρ̇j + e2j︸ ︷︷ ︸
Lfhjl

+αjl((δjl − de1j,0c0)ρj + ρj,∞de1j,0c0 + e1j)︸ ︷︷ ︸
αjl(hjl)

≥ 0,

(16)

where αjr(·) and αjl(·) are class K functions of their arguments. It can be noticed
that Lghjr = 0 and Lghjl = 0, and Eq. (16) are invalid constraints for uj with
respect to (13). Obviously, these CBFs are not capable of synthesizing controllers
and guarantee the forward invariance of set Cjk.

By introducing the definition of the relative degree in Def. 1, inequalities (4)
have the relative degree of 2 with respect to (13). Thus, we select the HOCBFs
of degree 2 to solve performance-critical control input sets for constraints (4).
Before that, χ0jk(ej), χ1jk(ej), and χ2jk(ej) with hjk(ej) are defined as

χ0jk(ej) = hjk(ej),

χ1jk(ej) = ( ddt + α1jk)χ0jk(ej),

χ2jk(ej) = ( ddt + α2jk)χ1jk(ej),

(17)

where α1jk(·) and α2jk(·) are K functions. From [29], the Lipschitz continuous
controllers for ensuring the forward invariance of sets (14) should satisfy

L2
fhjk(ej) + LgLfhjk(ej)(uj + wj)+

∂2hjk(ej)

∂t2
+O(hjk(ej)) + α2jk(χ1jk(ej)) ≥ 0.

(18)

where O(·) denotes the remaining Lie derivative along f and partial derivatives
with respect to t with degree less than or equal to 1. However, the inequality
constraints (18) on control input uj cannot be solved directly due to the unknown
term wj . Therefore, it is essential to determine feasible constrained conditions
that ensure the forward invariance of sets in (14) under unknown disturbance
wj .

Inspired by the ISSf in [30], an enlarged set Cdjk satisfying Cdjk ⊃ Cjk is
constructed as follows

Cdjk = {ej ∈ R2 | hjk(ej) + γjk(‖wj‖∞) ≥ 0},
∂Cdjk = {ej ∈ R2 | hjk(ej) + γjk(‖wj‖∞) = 0},

Int(Cdjk) = {ej ∈ R2 | hjk(ej) + γjk(‖wj‖∞) > 0},

where γjk(·) ∈ K∞. According to the definition of ISSf, the set Cjk is ISSf if the
set Cdjk is forward invariant.
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For hjk(ej) of relative degree 2, we define the sets Cd1jk and Cd2jk associated
with (17) for the system (13)

Cd1jk = {ej ∈ R2 | Φ1jk ≥ 0}, Cd2jk = {ej ∈ R2 | Φ2jk ≥ 0} (19)

with

Φ1jk = χ0jk(ej) + γ1jk(‖wj‖∞), Φ2jk = χ1jk(ej) + γ2jk(‖wj‖∞), (20)

where γ1jk(·) and γ2jk(·) are K∞ functions. The following lemma states that set
Cd1jk ∩ Cd2jk is forward invariant, and the set Cjk is ISSf.

Lemma 3: Let functions χ0jk(ej), χ1jk(ej), χ2jk(ej) be defined by (17) and
sets Cd1jk, Cd2jk be defined by (19). A continuous differentiable function hjk of
degree 2 for (13) is called as an input-to-state safe high order barrier function
(ISSf-HOBF) if there exist a constant ι ∈ R+, a class K∞ function ιjk(·), and
differentiable class K∞,e functions γ1jk(·) and γ2jk(·) such that

χ2jk(ej) ≥ −ιjk(‖wj‖∞),∀t ≥ t0. (21)

for ej ∈ Rm and wj ∈ Rm with ‖wj‖∞ ≤ ι. The ISSf-HOBF hjk renders that
the set Cjk is ISSf.
Proof: If hjk(ej) is ISSf-HOBF, the derivatives of Φ2jk from (20)-(21) is taken
as

Φ̇2jk ≥ −α2jk(Φ2jk − γ2jk(‖wj‖∞))− ιjk(‖wj‖∞). (22)

Similar to the proof of [28, Proposition 1], consider a set ∂Cd2jk, which yields

Φ2jk = 0 for ej ∈ ∂Cd2jk.

Then, one has Φ̇2jk ≥ −α2jk(−γ2jk(‖wj‖∞)) − ι2jk(‖wj‖∞). By choosing

γ2jk(·) = −α−12jk(·) ◦ ι2jk(·), it follows that Φ̇2jk ≥ 0 for Φ2jk = 0. By Lemma 1,

it gets that the set Cd2jk is forward invariant, i.e.

χ1jk(e1j) ≥ −γ2jk(‖wj‖∞), ∀t ≥ t0. (23)

From (20) and (23), it yields that the set Cd1jk is forward invariant, i.e.

χ0jk(e1j) ≥ −γ1jk(‖wj‖∞), ∀t ≥ t0. (24)

Hence, it is concluded that Cd1jk ∩Cd2jk is forward invariant. According to [30,
Definition 6], the system (13) is ISSf on Cjk defined by (14).

Lemma 4: Given a set Cjk in (14) with a continuously differentiable function
hjk of degree 2 for system (13), hjk is an input-to-state safe high order control
barrier function (ISSf-HOCBF) if there exist constants εjk, ι ∈ R+ and a function
α2jk(·) ∈ K∞ such that

sup
uj∈R

{
Lfχ1jk + Lgχ1jkuj − ε2jk

∂χ1jk

∂eTj
gjg

T
j

∂χ1jk

∂ej
+ α2jk(χ1jk) ≥ 0

}
, (25)
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for ∀ej ∈ R2 and wj ∈ R with ‖wj‖∞ ≤ ι. With ISSf-HOCBF hjk, a performance-
critical control input set is presented as

Uj =

{
uj | Lfχ1jk + Lgχ1jkuj−ε2jk

∂χ1jk

∂eTj
gjg

T
j

∂χ1jk

∂ej
≥ −α2jk(χ1jk)

}
. (26)

And any continuous controller uj ∈ Uj for ∀ej ∈ Rm ensures that Cjk is ISSf.
Proof: Taking the derivative of χ1jk along (13) yields that

χ̇1jk =Lfjχ1jk + Lgjχ1jkuj +
∂χ1jk

∂eTj
gjwj . (27)

For uj ∈ Uj , it follows that

χ̇1jk ≥ ε2jk
∂χ1jk

∂eTj
gjg

T
j

∂χ1jk

∂ej
+
∂χ1jk

∂eTj
gjwj − α2jk(χ1jk). (28)

Using (17), one has

χ2jk ≥‖εjk
∂χ1jk

∂eTj
gj +

1

2εjk
wj‖2 −

1

4ε2jk
‖wj‖2 ≥ −

1

4ε2jk
‖wj‖2. (29)

From Lemma 3, it means that function hjk is an ISSf-HOCBF of degree 2 for
system (13). Then, the controller uj ∈ Uj can guarantee that set Cjk is ISSf, i.e.
PPC objective (4) is satisfied.

The proposed nominal controller (11) does not consider the performance
requirements. To obtain the user-specified performance, the control input con-
straint in (26) needs to be prior satisfied over the nominal controller (11), which
is referred to as “performance-critical”. Then, a quadratic program is formulated
to solve the modified controller uopt,j

ujopt = arg min
uj∈R

‖uj − ujnom‖2

s.t. Ajuj ≤ Bj
(30)

with Aj = −Lgjχ1jk, Bj = Lfjχ1jk − ε2jk
∂χ1jk

∂eTj
gjg

T
j
∂χ1jk

∂ej
+ α2jk(χ1jk).

4 SIMULATION EXAMPLE

In this section, a simulation example of an unmanned surface vehicle is provided
to evaluate the effectiveness of the proposed observer-based performance-critical
control method. As shown in Fig. 1, the motion dynamics of the unmanned
surface vehicle is described as follows

η̇ = ϑ,

ϑ̇ = Ṙ(ψ)RT (ψ)ϑ− C ′ϑ−D′ϑ+R(ψ)M−1τ ,

C
′

= R(ψ)M−1CRT (ψ),

D
′

= R(ψ)M−1DRT (ψ),

R(ψ) =
[

cosψ − sinψ 0; sinψ cosψ 0; 0 0 1
] (31)
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YE

Fig. 1. Reference frames: XE − YE and XB − YB .

where η ∈ R3 denotes a position and heading vector in reference frame XE−YE ;
ϑ = R(ψ)ν with ν ∈ R3 being a surge, sway, and yaw velocity vector in XB−YB ;
M ∈ R3×3, C ∈ R3×3, and D ∈ R3×3 are the vehicle parameter matrices satis-
fying M = MT and C = −CT , refer to [31] for details. Simulation parameters
are select as ujd = col(sin(t), 0.4 cos(0.5t), 0), ρj0 = 10, ρj∞ = 0.5, δjr = 0.3,
δjl = 0.8, σj = 0.5, Lo1 = diag{2.266, 2.266, 2.266}, Lo2 = diag{3.85, 3.85, 3.85},
Lz1 = diag{2, 2, 2}, Lz2 = diag{3, 3, 3}, Lc = diag{1, 1, 1}, α1jk = α2jk = 1,
εjk = 0.5. To illustrate the effectiveness of proposed method, we conduct a
comparison simulation by using the nominal controller (11) and the modified
controller (30), respectively.

Comparison results are depicted in Figs. 2-5. Specifically, Fig. 2 displays
tracking errors e1j , e2j with the modified controller (30) and the nominal con-
troller (11), respectively. From Figs. 2(a)-2(b), it is observed that e1j under
modified controller ujopt can evolve within given performance bounds ejr and
ejl, whereas e1j under ujnom exhibits obvious overshoot and violates the con-
straints ejl. Further, Fig. 3 shows the error e2j under ujopt and ujnom, and it is
seen that the transient performance of e2j under ujopt is superior to that under
ujnom. According to Fig. 4, it gets that sets Cjk defined by hjk(ej) for system
(13) with unknown disturbances are ISSf by using the controller satisfying (26),
i.e. uj ∈ Uj . In addition, it is concluded that the constraints (4) are not violated.
And Fig. 3 plots the nominal and modified control inputs.

5 CONCLUSIONS

In this paper, we developed an observer-based performance-critical control method
for uncertain MIMO nonlinear systems in Brunovsky form. By using the de-
signed FTESO, the unknown term can be estimated within a finite time. With
estimated values from FTESO, a nominal controller was presented by using the
integral sliding surface technique. Next, we constructed a 2nd-order nonlinear
system with unknown input disturbances. ISSf-HOCBfs of relative degree 2 as-
sociated with performance constraints were designed to acquire the ISSf control
input sets under unknown disturbances. By using the nominal controller and ISSf
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Fig. 2. Tracking errors e1j under modified and nominal controllers.

0 10 20 30 40 50
Time(s)

-4

-2

0

2

4

e 2
j

e21

e22

e23

(a) With modified controllers.

0 10 20 30 40 50
Time(s)

-4

-2

0

2

4

e 2
j

e21

e22

e23

(b) With nominal controllers.

Fig. 3. Tracking errors e2j under modified and nominal controllers.

control input sets, tracking errors were ensured to satisfy the user-prescribed con-
straints. The effectiveness of the proposed method was demonstrated through a
simulation example of an unmanned surface vehicle.
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